Skip to main content
Log in

MHD flow of radiative micropolar nanofluid in a porous channel: optimal and numerical solutions

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The flow of a radiative and electrically conducting micropolar nanofluid inside a porous channel is investigated. After implementing the similarity transformations, the partial differential equations representing the radiative flow are reduced to a system of ordinary differential equations. The subsequent equations are solved by making use of a well-known analytical method called homotopy analysis method (HAM). The expressions concerning the velocity, microrotation, temperature, and nanoparticle concentration profiles are obtained. The radiation tends to drop the temperature profile for the fluid. The formulation for local Nusselt and Sherwood numbers is also presented. Tabular and graphical results highlighting the effects of different physical parameters are presented. Rate of heat transfer at the lower wall is seen to be increasing with higher values of the radiation parameter while a drop in heat transfer rate at the upper wall is observed. Same problem has been solved by implementing the numerical procedure called the Runge–Kutta method. A comparison between the HAM, numerical and already existing results has also been made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

u :

Component of velocity in x-direction

v :

Component of velocity in y-direction

ρ :

Density of nanofluid

T :

Temperature of the fluid

C :

Concentration of the fluid

C 1 :

Concentration at the lower plate of the channel

T 1 :

Temperature at the lower plate of the channel

C 2 :

Concentration at the upper plate of the channel

T 2 :

Temperature at the upper plate of the channel

f :

Dimensionless stream function

g :

Dimensionless form of the microrotation profile

B 0 :

Strength of the applied magnetic field

θ :

Dimensionless temperature profile

ϕ :

Dimensionless concentration profile

D T :

Thermophoresis coefficient

D B :

Brownian motion coefficient

Pr :

Prandtl number

N b :

Brownian motion parameter

N t :

Thermophoresis parameter

Sc :

Schmidt number

M :

Magnetic parameter

R d :

Radiation parameter

C f :

Skin friction coefficient

Nu x :

Local Nusselt number

η :

Dimsensionless similarity variable

μ :

Dynamic viscosity of the fluid

k :

The material parameter

(ρ)f :

Density of the base fluid

(ρc)f :

Heat capacity of the base fluid

(ρc)p :

Effective heat capacity of the nanoparticle

σ :

Electric conductivity

τ :

Parameter defined by \(\frac{{(\rho c)_{\text{p}} }}{{(\rho c)_{\text{f}} }}\)

References

  1. Hartman J (1937) Theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field. Mathematisk-fysiske Meddelelser XV:6

    Google Scholar 

  2. Hartman J, Lazarus F, Selskab DV (1937) Experimental investigations on the flow of mercury in a homogeneous magnetic field. Mathematisk-fysiske Meddelelser XV:7

    Google Scholar 

  3. Moreau R (1990) Magneto hydrodynamics. Kluwer, Dordrecht

    Google Scholar 

  4. Makinde OD, Mhone PY (2006) Hermite–Pade approximation approach to MHD Jeffery–Hamel flows. Appl Math Comput 181:966–972

    MATH  Google Scholar 

  5. Ellahi R, Riaz A (2010) Analytical solutions for MHD flow in a third-grade fluid with variable viscosity. Math Comput Model 52:1783–1793

    Article  MathSciNet  MATH  Google Scholar 

  6. Khan U, Ahmed N, Zaidi ZA, Asadullah M, Mohyud-Din ST (2014) MHD squeezing flow between two infinite plates. Ain Shams Eng J 5:187–192

    Article  Google Scholar 

  7. Sheikholeslami M, Ellahi R (2015) Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int J Heat Mass Transf 89:799–808

    Article  Google Scholar 

  8. Ellahi R, Hassan M, Zeeshan A (2015) Study on magnetohydrodynamic nanofluid by means of single and multi-walled carbon nanotubes suspended in a salt water solution. IEEE Trans Nanotechnol 14(4):726–734

    Article  Google Scholar 

  9. Eringen AC (1964) Simple micro-fluids. Int J Eng Sci 2:205–217

    Article  MATH  Google Scholar 

  10. Eringen AC (1996) Theory of micropolar fluids. J Math Mech 16(1):1–18

    MathSciNet  Google Scholar 

  11. Eringen AC (1972) Theory of thermomicro-fluids. J Math Anal Appl 38:480–496

    Article  MATH  Google Scholar 

  12. Ariman T, Turk M, Sylvester N (1973) Microcontinuum fluid mechanics—a review. Int J Eng Sci 11(8):905–930

    Article  MATH  Google Scholar 

  13. Ashraf M, Kamal MA, Syed KS (2009) Numerical study of asymmetric laminar flow of micropolar fluids in a porous channel. Comput Fluids 38:1895–1902

    Article  MATH  Google Scholar 

  14. Takhar HS, Bhargava R, Agrawal RS, Balaji AVS (2000) Finite element solution of micropolar fluid flow and heat transfer between two porous discs. Int J Eng Sci 38:1907–1922

    Article  MATH  Google Scholar 

  15. Kelson NA, Farrell TW (2001) Micropolar fluid flow over a porous stretching sheet with strong suction or injection. Int Commun Heat Mass Transfer 28:479–488

    Article  Google Scholar 

  16. Srinivasacharya D, Ramana Murthy JV, Venugopalam D (2001) Unsteady stokes flow of micropolar fluid between two parallel porous plates. Int J Eng Sci 39:1557–1563

    Article  MATH  Google Scholar 

  17. Ziabakhsh Z, Domairry G (2008) Homotopy analysis solution of micro-polar flow in a porous channel with high mass transfer. Adv Theory Appl Mech 1(2):79–94

    MATH  Google Scholar 

  18. Joneidi AA, Ganji DD, Babaelahi M (2009) Micropolar flow in a porous channel with high mass transfer. Int Commun Heat Mass Transfer 36(10):1082–1088

    Article  Google Scholar 

  19. Rashidi MM, Mohimanian Pour SA, Laraqi N (2010) A semi-analytical solution of micropolar flow in a porous channel with mass injection by using differential transform method. Nonlinear Anal Model 15(3):341–350

    MATH  Google Scholar 

  20. Si XH, Zheng LC, Zhang XX, Chao Y (2011) The flow of micropolar flow through a porous channel with expanding or contracting walls. Cent Eur J Phys 9(2):825–834

    Google Scholar 

  21. Sheikholeslami M, Ashorynejad HR, Ganji DD, Rashidi MM (2014) Heat and mass transfer of a micropolar fluid in a porous channel. Commun Numer Anal 2014:1–20

    Article  MathSciNet  Google Scholar 

  22. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Singer DA, Wang HP (eds) Developments and applications of non-Newtonian flows. American Society of Mechanical Engineers, New York, p 231 (99–105)

    Google Scholar 

  23. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254

    Article  Google Scholar 

  24. Buongiorno J (2005) Convective transport in nanofluids. J Heat Transfer 128(3):240–250

    Article  Google Scholar 

  25. Khan W, Pop I (2010) Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf 53:2477–2483

    Article  MATH  Google Scholar 

  26. Ellahi R, Raza M, Vafai K (2012) Series solutions of non-Newtonian nanofluid with Reynolds’ model and Vogel’s model by means of the homotopy analysis method. Math Comput Model 55:1876–1891

    Article  MathSciNet  MATH  Google Scholar 

  27. Sheikholeslami M, Ganji DD (2013) Heat transfer of Cu-water nanofluid flow between parallel plates. Powder Technol 235:873–879

    Article  Google Scholar 

  28. Sheikholeslami M, Ganji DD, Ashorynejad HR (2013) Investigation of squeezing unsteady nanofluid flow using ADM. Powder Technol 239:259–265

    Article  Google Scholar 

  29. Khan U, Ahmed N, Mohyud-Din ST (2015) Heat transfer effects on carbon nanotubes suspended nanofluid flow in a channel with non-parallel walls under the effect of velocity slip boundary condition: a numerical study. Neural Comput Appl. doi:10.1007/s00521-015-2035-4

    Google Scholar 

  30. Mohyud-Din ST, Khan U, Ahmed N, Hassan SM (2015) Magnetohydrodynamic flow and heat transfer of nanofluids in stretchable convergent/divergent channels. Appl Sci 5:1639–1664

    Article  Google Scholar 

  31. Mohyud-Din ST, Zaidi ZA, Khan U, Ahmed N (2015) On heat and mass transfer analysis for the flow of a nanofluid between rotating parallel plates. Aerosp Sci Technol 46:514–522

    Article  Google Scholar 

  32. Mohyud-Din ST, Khan U, Ahmed N, Bin-Mohsin B (2016) Heat and mass transfer analysis for MHD flow of nanofluid in convergent/divergent channels with stretchable walls using Buongiorno’s model. Neural Comput Appl (accepted)

  33. Rashidi MM, Vishnu Ganesh N, Abdul Hakeem AK, Ganga B (2014) Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation. J Mol Liq 198:234–238

    Article  Google Scholar 

  34. Haq RU, Nadeem S, Khan ZH, Akbar NS (2015) Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Physica E 65:17–23

    Article  Google Scholar 

  35. Khan U, Ahmed N, Mohyud-Din ST, Mohsin BB (2016) Nonlinear radiation effects on MHD flow of nanofluid over a nonlinearly stretching/shrinking wedge. Neural Comput Appl. doi:10.1007/s00521-016-2187-x

    Google Scholar 

  36. Abdulaziz O, Noor NFM, Hashim I (2009) Homotopy analysis method for fully developed MHD micropolar fluid flow between vertical porous plates. Int J Numer Meth Eng 78(7):817–827

    Article  MathSciNet  MATH  Google Scholar 

  37. Noor NFM, Ul Haq R, Nadeem S, Hashim I (2015) Mixed convection stagnation flow of a micropolar nanofluid along a vertically stretching surface with slip effects. Meccanica 50(8):2007–2022

    Article  MathSciNet  Google Scholar 

  38. Noor NFM, Ul Haq R, Abbasbandy S, Hashim I (2016) Heat flux performance in a porous medium embedded Maxwell fluid flow over a vertically stretched plate due to heat absorption. J Nonlinear Sci Appl 9(5):2986–3001

    Article  MathSciNet  MATH  Google Scholar 

  39. Liao S (ed) (2013) Advances in the homotopy analysis method, Chapter 7. World Scientific Press, London

  40. Liao SJ (2004) On the homotopy analysis method for nonlinear problems. Appl Math Comput 147:499–513

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Tauseef Mohyud-Din.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohyud-Din, S.T., Jan, S.U., Khan, U. et al. MHD flow of radiative micropolar nanofluid in a porous channel: optimal and numerical solutions. Neural Comput & Applic 29, 793–801 (2018). https://doi.org/10.1007/s00521-016-2493-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2493-3

Keywords

Navigation