Skip to main content
Log in

The application of an interactively recurrent self-evolving fuzzy CMAC classifier on face detection in color images

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This study proposes an interactively recurrent self-evolving fuzzy cerebellar model articulation controller (IRSFCMAC) classifier to solve face detection problems. The learning methods of the proposed classifier are based on simultaneous structure and parameter learning. The structure learning is used to decide the proper input space partition, while the parameter learning is based on gradient descent method. The online structure learning does not need to set any initial structure in advance. In other words, the online structure learning algorithm enables the network along of the problem to efficiently identify the required network structure. The advantages of our proposed IRSFCMAC classifier include (1) using a non-constant differentiable Gaussian basis function to model the hypercube structure; (2) applying an interactively recurrent structure to serve as external loops and internal feedbacks by feeding the hypercube cell (rule) firing strength to itself and other hypercube cells (rules); and (3) requiring fewer computing memory. Finally, experimental results show that the proposed IRSFCMAC classifier is a more adaptive and effective face detection than the other classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Yamada T, Yabuta T (1993) Dynamic system identification using neural networks. IEEE Trans Syst Man Cybern 23(1):204–211

    Article  MATH  Google Scholar 

  2. Lu SW, Basar T (1998) Robust nonlinear system identification using neural-network models. IEEE Trans Neural Netw 9(3):407–429

    Article  Google Scholar 

  3. Xianzhong C, Shin KG (1993) Direct control and coordination using neural networks. IEEE Trans Syst Man Cybern 23(3):686–697

    Article  Google Scholar 

  4. Wu S, Wong KYM (1998) Dynamic overload control for distributed call processors using the neural network method. IEEE Trans Neural Netw 9(6):1377–1387

    Article  Google Scholar 

  5. Mazroua AA, Salama MMA et al (1993) PD pattern recognition with neural networks using the multilayer perceptron technique. IEEE Trans Electr Insul 28(6):1082–1089

    Article  Google Scholar 

  6. Srinivasa N, Ahuja N (1993) A topological and temporal correlator network for spatiotemporal pattern learning, recognition, and recall. IEEE Trans Neural Netw 10(2):92–102

    Google Scholar 

  7. Nair SK, Moon J (1997) Data storage channel equalization using neural networks. IEEE Trans Neural Netw 8(5):1037–1048

    Article  Google Scholar 

  8. You C, Hong D (1998) Nonlinear blind equalization schemes using complex-valued multilayer feedforward neural networks. IEEE Trans Neural Netw 9(6):1442–1455

    Article  Google Scholar 

  9. Albus JS (1975) A new approach to manipulator control: the cerebellar model articulation controller (CMAC). Trans ASME J Dyn Syst Meas Contr 220–227

  10. Albus JS (1975) Data storage in the cerebellar model articulation controller (CMAC). Trans ASME J Dyn Syst Meas Contr 228–233

  11. Lee ZJ, Wang YP et al (2004) A genetic algorithm based robust learning credit assignment cerebellar model articulation controller. Appl Soft Comput 4(4):357–367

    Article  Google Scholar 

  12. Su SF, Tao TW et al (2003) Credit assigned CMAC and its application to online learning robust controllers. IEEE Trans Syst Man Cybern B 33(3):202–213

    Google Scholar 

  13. Leu YG, Hong CM et al (2010) Compact cerebellar model articulation controller for ultrasonic motors. Int J Innov Comput Inf Control 6(12):5539–5552

    Google Scholar 

  14. Wu J, Pratt F (1999) Self-organizing CMAC neural networks and adaptive dynamic control. In: Proceedings of IEEE international symposium on intelligent control/intelligent systems and semiotics pp 259–265

  15. Commuri S, Lewis FL (1997) CMAC neural networks for control of nonlinear dynamical systems: structure, stability, and passivity. Automatics 33(4):635–641

    Article  MathSciNet  MATH  Google Scholar 

  16. Chow MY, Menozzi A (1994) A self-organized CMAC controller. In: Proceedings of IEEE international conference on industrial technology, pp 68–72

  17. Hwang KS, Lin CS (1998) Smooth trajectory tracking of three-link robot: a self-organizing CMAC approach. IEEE Trans Syst Man Cybern B 28(5):680–692

    Article  Google Scholar 

  18. Lee HM, Chen CM et al (2003) A self-organizing HCMAC neural-network classifier. IEEE Trans Neural Netw 14(1):15–27

    Article  Google Scholar 

  19. Reay DS (2003) CMAC and B-spline neural networks applied to switched reluctance motor torque estimation and control. The 29th annual conference of the IEEE industrial electronics society (IECON ‘03) vol 1, pp 323–328

  20. Jou CC (1992) A fuzzy cerebellar model articulation controller. In: Proceedings of IEEE international conference on fuzzy systems, pp 1171–1178

  21. Pedreira CE (2006) Learning vector quantization with training data selection. IEEE Trans Pattern Anal Mach Intell 28(1):157–162

    Article  Google Scholar 

  22. Ang KK, Quek C et al (2003) POPFNN-CRI (S): pseudo outer product based fuzzy neural network using the compositional rule of inference and singleton fuzzifier. IEEE Trans Syst Man Cybern B 33(6):838–849

    Article  Google Scholar 

  23. Chen S, Zhangm D (2004) Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans. Systems, Man and Cybernetics, Part B. Cybernetics 34(4):1907–1916

    Google Scholar 

  24. Lin CS, Li CK (1996) A new neural network structure composed of small CMACs. In: Proceedings of IEEE conference neural systems, pp 1777–1783

  25. Lane SH, Militzer J (1992) A comparison of five algorithm for the training of CMAC memories for learning control systems. Int Fed Automat Contr 28(5):1027–1035

    MathSciNet  Google Scholar 

  26. Lin CS, Chiang CT (1997) Learning convergence of CMAC technique. IEEE Trans Neural Netw 8(6):1281–1292

    Article  Google Scholar 

  27. Ker JS, Hsu CC et al (1997) A fuzzy CMAC model for color reproduction. Fuzzy Sets Syst 91:53–68

    Article  Google Scholar 

  28. Zhang K, Qian F (2000) Fuzzy CMAC and its application. In: Proceedings of 3rd world congress on intelligent control and automation, pp 944–947

  29. Guo C, Ye Z et al (2002) A hybrid fuzzy cerebellar model articulation controller based autonomous controller. Comput Electr Eng 28(1):1–16

    Article  MATH  Google Scholar 

  30. Su SF, Lee ZJ et al (2006) Robust and fast learning for fuzzy cerebellar model articulation controllers. IEEE Trans Syst Man Cybern B Cybern 36(1):203–208

    Article  Google Scholar 

  31. Wu TF, Tsai PS et al (2006) Adaptive fuzzy CMAC control for a class of nonlinear systems with smooth compensation. IEE Proc Control Theory Appl 153(6):647–657

    Article  Google Scholar 

  32. Peng YF, Lin CM (2004) Intelligent hybrid control for uncertain nonlinear systems using a recurrent cerebellar model articulation controller. IEE Proc Control Theory Appl 151(5):589–600

    Article  Google Scholar 

  33. Theocharis JB (2006) A high-order recurrent neuro-fuzzy system with internal dynamics: application to the adaptive noise cancellation. Fuzzy Sets Syst 157(4):471–500

    Article  MathSciNet  Google Scholar 

  34. Stavrakoudis DG, Theocharis JB (2007) A recurrent fuzzy neural network for adaptive speech prediction. Proceedings of IEEE international conference systems, man, cybernetics, pp 2056–2061

  35. Terrillon JC, Shirazi MN et al (2000) Comparative performance of different skin chrominance models and chrominance spaces for the automatic detection of human faces in color images. IEEE international conference on face and gesture recognition, pp 54–61

  36. Bojic N, Pang KK (2000) Adaptive skin segmentation for head and shoulder video sequence. IEEE conference on visual communications and image processing, pp 704–711

  37. Yang J, Stiefellhagen R et al (1998) Real-time face and facial feature tracking and applications. In: Proceedings of auditory-visual speech process, pp 1–6

  38. Chai D, Bouzerdoum A (2000) A Bayesian approach to skin color classification in YCbCr color space. IEEE TENCON, pp 421–424

  39. Chai D, Ngan KN (1999) Face segmentation using skin color map in video phone applications. IEEE Trans Circuits Syst Video Technol 9(4):551–564

    Article  Google Scholar 

  40. Lin CJ, Chuang HC et al (2006) Face detection in color images using efficient genetic algorithms. Opt Eng 45(4):047201. doi:10.1117/1.2189290

    Article  Google Scholar 

  41. Merz P, Freisleben B (2000) Fitness landscape analysis and genetic algorithms for the quadratic assignment problem. IEEE Trans Evol Comput 4(4):337–352

    Article  Google Scholar 

  42. Karr CL (1991) Design of an adaptive fuzzy logic controller using a genetic algorithm. In: Proceedings of 4th conference on genetic algorithms, pp 450–457

  43. Wang JG, Tai SC et al (2014) Medical diagnosis applications using a novel interactively recurrent self-evolving fuzzy CMAC model. Int Joint Conf Neural Netw 2014:4092–4098

    Google Scholar 

  44. Park J, Sandberg IW (1991) Universal approximation using radial-basis-function networks. Neural Comput 3:246–257

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Jian Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JG., Tai, SC. & Lin, CJ. The application of an interactively recurrent self-evolving fuzzy CMAC classifier on face detection in color images. Neural Comput & Applic 29, 201–213 (2018). https://doi.org/10.1007/s00521-016-2551-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2551-x

Keywords

Navigation