Abstract
Accesses to physical links in Networks-on-Chip need to be appropriately arbitrated to avoid collisions. In the case of asynchronous routers, this arbitration between various clients, carrying messages with different service levels, is managed by dedicated circuits called arbiters. The latter are accustomed to allocate the shared resource to each client in a round-robin fashion; however, they may be tuned to favor certain messages more frequently by means of various digital design techniques. In this work, we make use of artificial neural networks to propose a mechanism to dynamically compute priority for each message by defining a few constraints. Based on these constraints, we first build a mathematical model for the objective function, and propose two algorithms for vector selection and resource allocation to train the artificial neural networks. We carry out a detailed comparison between seven different learning algorithms, and observe their effectiveness in terms of prediction efficiency for the application of dynamic priority arbitration. The decision is based on input parameters: available tokens, service levels, and an active request from each client. The performance of the learning algorithms has been analyzed in terms of mean squared error, true acceptance rate, number of epochs and execution time, so as to ensure mutual exclusion.



Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Notes
Our particular application does not need run-time training, since our architecture, the number of inputs and outputs, number of virtual channels (i.e., clients) usually will all remain fixed during the operation—so offline training once will be sufficient.
References
Chapiro DM (1984) Globally-asynchronous locally-synchronous systems. Ph.D. thesis, Stanford University
Agarwal A, Iskander C, Shankar R (2009) Survey of NoC architectures and contributions. Eng Comput Archit 3(1)
Beigne E, Clermidy F, Vivet P, Clouard A, Renaudin M (2005) Proceedings of 11th IEEE symposium on asynchronous circuits and systems (ASYNC 2005), pp 54–63. doi:10.1109/ASYNC.2005.10
Beigne E, Vivet P (2006) Proceedings of the 12th IEEE international symposium on asynchronous circuits and systems. IEEE Computer Society, Washington, DC, USA, 2006. ASYNC ’06, p 172. doi:10.1109/ASYNC.2006.16
Dally W, Towles B (2001) Design automation conference, 2001. Proceedings (2001), pp 684–689. doi:10.1109/DAC.2001.156225
Naqvi S, Najvirt R, Steininger A (2013) 2013 IEEE 16th International Symposium on design and diagnostics of electronic circuits systems (DDECS), pp 153–158. doi:10.1109/DDECS.2013.6549808
Najvirt R, Naqvi S, Steininger A (2013) 2013 IEEE 19th international symposium on asynchronous circuits and systems (ASYNC), pp 115–123. doi:10.1109/ASYNC.2013.25
Bjerregaard T (2005) Sparso, in design, automation and test in Europe, 2005. Proceedings, vol 2, pp 1226–1231.doi:10.1109/DATE.2005.36
Rostislav DR, Vishnyakov V, Friedman E, Ginosar R (2005) Proceedings of the 11th IEEE international symposium on asynchronous circuits and systems. IEEE Computer Society, Washington, DC, USA, 2005. ASYNC ’05, pp 44–53. doi:10.1109/ASYNC.2005.11
Dobkin RR, Ginosar R, Kolodny A (2009) QNoC asynchronous router. Integr VLSI J 42(2):103. doi:10.1016/j.vlsi.2008.03.001
Dobkin R, Ginosar R, Cidon I (2007) First international symposium on Networks-on-Chip, 2007. NOCS 2007, p 218. doi:10.1109/NOCS.2007.36
Feliciian F, Furber S (2004) IEEE international SOC conference, 2004 Proceedings, pp 274–277. doi:10.1109/SOCC.2004.1362432
Naqvi SR (2012) ICCGI 2012
Sparso J, Furber S (2010) Principles of asynchronous circuit design: a systems perspective, 1st edn. Springer, Berlin
Ogras UY, Marculescu R (2013) Modeling, analysis and optimization of network-on-chip communication architectures. Springer, Berlin
Naqvi SR, Steininger A (2014) Proceedings of the conference on design, automation & test in Europe. European Design and Automation Association, 3001 Leuven, Belgium, Belgium, 2014, DATE ’14, pp 295:1–295:6. http://dl.acm.org/citation.cfm?id=2616606.2617035
Kinniment DJ (2007) Synchronization and arbitration in digital systems. Wiley, New York
Dally W, Towles B (2003) Principles and practices of interconnection networks. Morgan Kaufmann Publishers Inc., San Francisco
Duato J, Yalamanchili S, Lionel N (2002) Interconnection networks: an engineering approach. Morgan Kaufmann Publishers Inc., San Francisco
Bjerregaard T, Sparso J (2005) Proceedings of 11th IEEE international symposium on asynchronous circuits and systems, 2005. ASYNC 2005, pp 34 – 43. doi:10.1109/ASYNC.2005.7
Felicijan T, Bainbridge J, Furber S (2003) Proceedings of the 15th international conference on microelectronics, 2003. ICM 2003, pp 123–126. doi:10.1109/ICM.2003.1287737
Dimitrakopoulos G, Chrysos N, Galanopoulos K (2008) IEEE international conference on computer design, ICCD 2008, pp 664–670. doi:10.1109/ICCD.2008.4751932
Foo S, Saratchandran P, Sundararajan N (1993) Proceedings of 1993 international joint conference on neural networks, 1993. IJCNN ’93-Nagoya, vol 3, pp 3058–3061. doi:10.1109/IJCNN.1993.714365
Onuki J, Maenosono T, Shibata M, Iijima N, Mitsui H, Yoshida Y, Sone M (1993) Proceedings of 1993 international joint conference on neural networks, 1993. IJCNN ’93-Nagoya, vol 2, pp 1913–1916. doi:10.1109/IJCNN.1993.717029
Speckmann H, Thole P, Rosenstiel W (1993) Proceedings of 1993 international joint conference on neural networks, 1993. IJCNN ’93-Nagoya, vol 2, pp 1951–1954. doi:10.1109/IJCNN.1993.717038
Muller DE, Bartky WS (1959) Proceedings of international symposium on theory of switching, part 1. Harvard University Press, Massachusetts
Yakovlev A, Petrov A, Lavagno L (1994) Very large scale integration (VLSI) systems. IEEE Trans 2(3):372. doi:10.1109/92.311648
Ghiribaldi A, Bertozzi D, Nowick SM (2013) Design automation test in europe conference exhibition (DATE), pp 332–337. doi:10.7873/DATE.2013.079
G. Miorandi, D. Bertozzi, S. Nowick (2015) 2015 21st IEEE international symposium on asynchronous circuits and systems (ASYNC), pp 108–115. doi:10.1109/ASYNC.2015.24
Lent B (1982) A variable priority arbiter for resource allocation in asynchronous multiprocessor systems. Microprocess Microprogr 9(5):299. doi:10.1016/0165-6074(82)90010-2
Hasasneh N, Bell I, Jesshope C (2007) Architectural premises for pervasive computing (ARCS 06). J Syst Arch 53(56):253. doi:10.1016/j.sysarc.2006.10.004
Chouvardas VG, Antoniades I, Hatalis M, Bleris GL (2008) Resource arbitration using neural networks. citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.77.5302&rep=rep1&type=pdf
Meireles M, Almeida P, Simoes M (2003) A comprehensive review for industrial applications of artificial neural networks. Ind Electron IEEE Trans 50(3):585. doi:10.1109/TIE.2003.812470
Azar AT (2013) Fast neural network learning algorithms for medical applications. Neural Comput Appl 23(3–4):1019
Guojin C, Miaofen Z, Honghao Y, Yan L (2007) IEEE international conference on signal processing and communications, ICSPC 2007, pp 1207–1210. doi:10.1109/ICSPC.2007.4728542
Güçlü U, van Gerven MAJ (2015) Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. J Neurosci 35(27):10005. doi:10.1523/jneurosci.5023-14.2015
Bielecki A (2003) Mathematical model of architecture and learning processes of neural networks. TASK quarterly : scientific bulletin of academic computer centre in Gdansk 7(1):93
Nouir Z, Sayrac B, Fourestié B, Tabbara W, Brouaye F (2007) 13th European wireless conference, Paris, France
Reed R (1993) Pruning algorithms-a survey. Trans Neural Netw 4(5):740. doi:10.1109/72.248452
Marquardt DW (1963) An alogorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431
Beale E (1972) A derivation of conjugate gradients. Numerical methods for nonlinear optimization, pp 39–43
Gill PE, Murray W, Wright MH (1981) Practical Optimization. Academic Press
Hestenes MR (2012) Conjugate direction methods in optimization, vol 12. Springer, Berlin
Johansson EM, Dowla FU, Goodman DM (1991) Backpropagation learning for multilayer feed-forward neural networks using the conjugate gradient method. Int J Neural Syst 2(04):291
Battiti R, Masulli F (1990) International neural network conference. Springer, Berlin
Battiti R (1992) First- and second-order methods for learning: between steepest descent and newton's method. Neural Comput 4(2):141. doi:10.1162/neco.1992.4.2.141
Beale MH, Hagan MT, Demuth HB (2010) Neural network toolbox. Users Guide, MathWorks
Kamran M, Haider SA, Akram T, Naqvi SR, He SK (2016) Prediction of IV curves for a superconductingthin film using artificial neural networks. Superlattices and Microstruct 95:88–94
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Naqvi, S.R., Akram, T., Haider, S.A. et al. Artificial neural networks based dynamic priority arbitration for asynchronous flow control. Neural Comput & Applic 29, 627–637 (2018). https://doi.org/10.1007/s00521-016-2571-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-016-2571-6