Skip to main content

Advertisement

Log in

Tabu search-based classification for eye-movement behavioral decisions

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Adaptive human–computer interfaces (HCIs) are fundamental to designing adaptive websites and adaptive decision support systems. Integrating these intelligent systems with modern eye trackers provides more effective ways to exploit eye fixation data and offers improved services to users. We develop an exemplar-based classifier using the tabu search algorithm to predict which decision strategy may underlie an empirical search behavior. Our algorithm reduces the size of decision concept representations to find the best exemplars for each concept. Experimental results show that our classifier is highly accurate in classifying the sequence of empirical eye fixations, demonstrating the promise of integrating adaptive HCIs with modern eye trackers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aha DW, Kibler D, Albert MK (1991) Instance-based learning algorithms. Mach Learn 6(1):37–66

    Google Scholar 

  2. Bettman JR, Johnson EJ, Payne JW (1990) A componential analysis of cognitive effort in choice. Organ Behav Hum Decis Process 45:111–139

    Article  Google Scholar 

  3. Brandt SA, Stark LW (1997) Spontaneous eye movements during visual imagery reflect the content of the visual scene. J Cogn Neurosci 9(1):27–38

    Article  Google Scholar 

  4. Brusilovsky P (2001) Adaptive hypermedia. User Model User Adapt Interact 11(1–2):87–110

    Article  MATH  Google Scholar 

  5. Chen Q (2001) Human computer interaction: issues and challenges. IGI Global, Hershey

    Book  Google Scholar 

  6. Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1):21–27

    Article  MATH  Google Scholar 

  7. Day R-F (2010) Examining the validity of the Needleman–Wunsch algorithm in identifying decision strategy with eye-movement data. Decis Support Syst 49(4):396–403

    Article  Google Scholar 

  8. Dix A (2009) Human–computer interaction. Springer, Berlin

    Google Scholar 

  9. Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1(1):53–66

    Article  Google Scholar 

  10. Glover F (1989) Tabu search—part i. ORSA J Comput 1:190–206

    Article  MATH  Google Scholar 

  11. Glover F (1990) Tabu search—part ii. ORSA J Comput 2:4–32

    Article  MATH  Google Scholar 

  12. Glover F, Laguna M (1997) Tabu search. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  13. Glover F, Hanafi S (2010) Metaheuristic search with inequalities and target objectives for mixed binary optimization part i: exploiting proximity. Int J Appl Metaheuristic Comput 1(1):1–15

    Article  Google Scholar 

  14. Glover F, Hanafi S (2010) Metaheuristic search with inequalities and target objectives for mixed binary optimization—part ii: exploiting reaction and resistance. Int J Appl Metaheuristic Comput 1(2):1–17

    Article  Google Scholar 

  15. Glover F, Laguna M, Marti R (2000) Fundamentals of scatter search and path relinking. Control Cybern 29(3):653–684

    MathSciNet  MATH  Google Scholar 

  16. Hair JF, Anderson RE, Tatham RL, Black WC (1998) Multivariate data analysis, 5th edn. Prentice-Hall, London

    Google Scholar 

  17. Hegarty M, Mayer RE, Green CE (1992) Comprehension of arithmetic word problems: evidence from students’ eye fixations. J Educ Psychol 84(1):76–84

    Article  Google Scholar 

  18. Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, Ann Arbor

    MATH  Google Scholar 

  19. Just MA, Carpenter PA (1976) Eye fixations and cognitive processes. Cogn Psychol 8:441–480

    Article  Google Scholar 

  20. Kirkpatrick S, Gelatt C Jr., Vecchi M (1983) Optimization by simulated annealing. Science 220(4598):671–680

  21. Laeng B, Teodorescu D-S (2002) Eye scanpaths during visual imagery reenact those of perception of the same visual scene. Cogn Sci 26:207–231

    Article  Google Scholar 

  22. Laguna M, Marti R (2003) Scatter search: methodology and implementations in C. Kluwer Academic Publishers, Boston

  23. Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions, and reversals. Sov Phys Dokl 10:707–710

    MathSciNet  MATH  Google Scholar 

  24. Lin C-C (2006) Optimal web site reorganization considering information overload and search depth. Eur J Oper Res 173(3):839–848

    Article  MATH  Google Scholar 

  25. Mantaras RLD, Armengol E (1998) Machine learning from examples: inductive and lazy methods. Data Knowl Eng 25(1–2):99–123

    Article  MATH  Google Scholar 

  26. Maquera G, Laguna M, Gandelman DA, Sant’Anna AP (2011) Scatter search applied to the vehicle routing problem with simultaneous delivery and pickup. Int J Appl Metaheuristic Comput 2(2):1–20

    Article  Google Scholar 

  27. Medin DL, Smith EE (1984) Concepts and concept formation. Annu Rev Psychol 35:113–138

    Article  Google Scholar 

  28. Payne JW, Bettman JR, Johnson EJ (1993) The adaptive decision maker. Cambridge University Press, New York

    Book  Google Scholar 

  29. Perkowitz M, Etzioni O (2000) Towards adaptive web sites: conceptual framework and case study. Artif Intell 118(1):245–275

    Article  MATH  Google Scholar 

  30. Picard RW (1997) Affective computing. MIT Press, Cambridge

    Book  Google Scholar 

  31. Pomplug M, Sichelschmidt L, Wagner K, Clermont T, Rickheit G, Ritter H (2001) Comparative visual search: a difference that makes a difference. Cogn Sci 25:3–36

    Article  Google Scholar 

  32. Qahri Saremi H, Abedin B, Meimand Kermani A (2008) Website structure improvement: quadratic assignment problem approach and ant colony meta-heuristic technique. Appl Math Comput 195(1):285–298

    MathSciNet  MATH  Google Scholar 

  33. Rayner K (1998) Eye movements in reading and information processing: 20 years of research. Psychol Bull 124(3):372–422

    Article  Google Scholar 

  34. Russo JE (2010) Eye fixations as a process trace. In: Schulte-Mecklenbeck M, Kuehberger A, Ranyard R (eds) A handbook of process tracing methods for decision research: a critical review and user’s guide. Taylor & Francis, Hove

    Google Scholar 

  35. Russo JE, Rosen LD (1975) An eye fixation analysis of multialternative choice. Mem Cogn 3(3):267–276

    Article  Google Scholar 

  36. Smith EE, Medin DL (1981) Categories and concepts. Harvard University Pres, Cambridge

    Book  Google Scholar 

  37. Todd P, Benbasat I (1991) An experimental investigation of the impact of computer based decision aids on decision making strategies. Inf Syst Res 2(2):87–115

    Article  Google Scholar 

  38. Todd P, Benbasat I (1992) The use of information in decision making: an experimental investigation of the impact of computer-based decision aids. MIS Q 16(3):373–393

    Article  Google Scholar 

  39. Todd P, Benbasat I (1994) The influence of decision aids on choice strategies: an experimental analysis of the role of cognitive effort. Organ Behav Hum Decis Process 60:36–74

    Article  Google Scholar 

  40. Todd P, Benbasat I (2000) Inducing compensatory information processing through decision aids that facilitate effort reduction: an experimental assessment. J Behav Decis Mak 13(1):91–106

    Article  Google Scholar 

  41. Vertegaal R (2003) Attentive user interfaces. Commun ACM 46(3):30–33

    Article  Google Scholar 

  42. West JM, Haake AR, Rozanski EP, Karn KS (2006) Eyepatterns: software for identifying patterns and similarities across fixation sequences. In: Proceedings of the 2006 symposium on Eye tracking research & applications New York, pp 149–154

  43. Wilson DR, Martinez TR (2000) Reduction techniques for instance-based learning algorithms. Mach Learn 38(3):257–286

    Article  MATH  Google Scholar 

  44. Yin P-Y, Guo Y-M (2013) Optimization of multi-criteria website structure based on enhanced tabu search and web usage mining. Appl Math Comput 219(24):11082–11095

    Google Scholar 

Download references

Acknowledgments

This research is partially supported by National Science Council of ROC, under Grants NSC 98-2410-H-260-018-MY3 and NSC 97-2410-H-218-022-.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-Yeng Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, PY., Day, RF. & Wang, YC. Tabu search-based classification for eye-movement behavioral decisions. Neural Comput & Applic 29, 1433–1443 (2018). https://doi.org/10.1007/s00521-016-2583-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2583-2

Keywords

Navigation