Skip to main content
Log in

Artificial neural network model for ground vibration amplitudes prediction due to light railway traffic in urban areas

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The growth of density and circulation speed of railway transportation systems in urban areas increases the importance of the research issues of the produced environmental impacts. This study presents a field data analysis, obtained during monitoring campaigns of ground vibration, due to light railway traffic in urban areas, based on the artificial neural network (ANN) approach, using quantitative and qualitative predictors. Different ANN-based models, using those predictors, were evaluated/trained and validated. Using several criteria, including those that measures the possibility of ANN overfitting (RR2) and complexity (AIC), the best ANN model was successfully obtained for Lisbon area. This model, with 16 input elements (quantitative and qualitative predictors), 2 neurons on the hidden layer with a hyperbolic tangent sigmoid transfer function, and 1 neuron on the output layer considering a linear transfer function, has 0.9720 for the coefficient of determination and 0.5293 for the sum squared error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

(adapted from [29])

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AIC:

Akaike information criteria

ANOVA:

Analysis of variance

ANN:

Artificial neural network

FFT:

Fast Fourier transform

FTA:

Federal Transit Administration

FRA:

Federal Railroad Administration

ISO:

International Organization for Standardization

LFSS:

Sum of the squared lack-of-fit error

MSE:

Mean squared error

PESS:

Sum of the squared pure error

SBIC:

Schwarz–Bayesian information criteria

SSE:

Sum of the squared error

SST:

Total sum of squares

A :

Ground vibration peak amplitude

B :

Building type (qualitative predictor)

Cn :

Category of a qualitative variable

C :

Coefficient of determination matrix between pairs of distinct columns of matrix X

c :

Vibration propagation velocity

E :

Energy

f :

Wave frequency

f(s):

Transfer function

G :

Dominant geology (qualitative predictor)

hls:

Hidden layer size

D :

Distance

Kn :

Indicator variables

PVS:

Peak velocity sum

Q :

Quality factor

R2:

Coefficient of determination

\(R_{\text{Max}}^{2}\) :

Maximum coefficient of determination

RR2 :

Ratio of coefficients of determination

s :

Input of the transfer function

T :

Rail track type (qualitative predictor)

\(\varvec{t}\left( {\varvec{\gamma}^{h} \varvec{x} +\varvec{\theta}^{h} } \right)\) :

Vector of transfer functions associated to two neurons of the hidden layer

V :

Train circulation speed

X :

Input matrix

x :

Vector of the input variable

xi :

Input variable

Y :

Output vector

Yi :

Sum of a predicted mean response

α :

Damping factor

E :

Dissipated energy

γ :

Parameter (or weight)

\(\varvec{\gamma}^{O}\) :

Weights between the hidden layer and the output layer

\(\gamma_{ij}\) :

Adjustable parameters

\(\varvec{\gamma}^{h}\) :

Weights between the inputs and the hidden layer

\(\theta^{O}\) :

Bias of the output vector

\(\varvec{\theta}^{h}\) :

Bias vector for the hidden layer

θj :

Bias

References

  1. Connolly DP, Kouroussis G, Laghrouche O, Ho CL, Forde MC (2014) Benchmarking railway vibrations—track, vehicle, ground and building effects. Constr Build Mater 92:64–81. doi:10.1016/j.conbuildmat.2014.07.042

    Article  Google Scholar 

  2. Connolly DP, Marecki GP, Kouroussis G, Thalassinakis I, Woodward P (2015) The growth of railway ground vibrations problems—a review. Sci Total Environ. doi:10.1016/j.trgeo.2015.09.002

    Google Scholar 

  3. Kouroussis G, Connolly DP, Verlinden O (2014) Railway-induced ground vibrations—a review of vehicle effects. International journal of rail transportation 2(2):69–110. doi:10.1008/23248378.2014.897791

    Article  Google Scholar 

  4. Wilson GP, Saurenman HJ, Nelson JT (1983) Control of ground-borne noise and vibration. J Sound Vib 87(2):339–350. doi:10.1016/0022-460X(83)90573-4

    Article  Google Scholar 

  5. Nelson JT (1996) Recent developments in ground-borne noise and vibration control. J Sound Vib 193(1):367–376. doi:10.1006/jsvi.1996.0277

    Article  Google Scholar 

  6. Hanson CE, Towers DA, Meister LD (2005) High-speed ground transportation noise and vibration impact assessment. HMMH report 293630-4. U.S. Department of Transportation, Federal Railroad Administration, Office of Railroad Development, October

  7. Hanson CE, Towers DA, Meister LD (2006) Transit noise and vibration impact assessment. Report FTA-VA-90-1003-06. U.S. Department of Transportation, Federal Transit Administration, Office of Planning and Environment, May

  8. International Organization for Standardization, ISO 14837-1:2005. Mechanical vibration—ground-borne noise and vibration arising from rail systems, part 1: general guidance

  9. Grundmann H, Lieb M, Trommer E (1999) The response of a layered half-space to traffic loads moving along its surface. Arch Appl Mech 69(1):55–67. doi:10.1007/s004190050204

    Article  MATH  Google Scholar 

  10. Sheng X, Jones CJC, Petyt M (1999) Ground vibration generated by a load moving along a railway track. J Sound Vib 228(1):129–156. doi:10.1006/jsvi.1999.2406

    Article  Google Scholar 

  11. Picoux B, Le Houédec D (2005) Diagnosis and prediction of vibration from railway trains. Soil Dyn Earthq Eng 25:905–921. doi:10.1016/j.soildyn.2005.07.002

    Article  Google Scholar 

  12. Lombaert G, Degrande G, Kogut J, François S (2006) The experimental validation of a numerical model for the prediction of railway induced vibrations. J Sound Vib 297(3–5):521–535. doi:10.1016/j.jsv.2006.03.048

    Google Scholar 

  13. Lombaert G, Degrande G, Vanhauwere B, Vandeborght B, François S (2006) The control of ground-borne vibrations from railway traffic by means of continuous floating slabs. J Sound Vib 297(3–5):946–961. doi:10.1016/j.jsv.2006.05.013

    Article  Google Scholar 

  14. Galvín P, Domínguez J (2007) Analysis of ground motion due to moving surface loads induced by high-speed trains. Eng Anal Bound Elem 31:931–941. doi:10.1016/j.enganabound.2007.03.003

    Article  MATH  Google Scholar 

  15. Metrikine AV, Vrouwenvelder T (2000) Surface ground vibration due to a moving train in a tunnel: two-dimensional model. J Sound Vib 234(1):43–66. doi:10.1006/jsvi.1999.2853

    Article  Google Scholar 

  16. Andersen L, Jones CJC (2006) Coupled boundary and finite element analysis of vibration from railway tunnes—a comparison of two and three-dimensional models. J Sound Vib 293(3–5):611–625. doi:10.1016/j.jsv.2005.08.044

    Article  Google Scholar 

  17. Degrande G, Clouteau D, Othman R, Arnst M, Chebli H, Klein R, Chatterjee P, Janssens B (2006) A numerical model for ground-borne vibrations from underground railway traffic based on a periodic finite element-boundary element formulation. J Sound Vib 293(3–5):645–666. doi:10.1016/j.jsv.2005.12.023

    Article  Google Scholar 

  18. Verbraken H, Lombaert G, Degrande G (2011) Verification of an empirical prediction method for railway induced vibrations by means of numerical simulations. J Sound Vib 330:1692–1703. doi:10.1016/j.jsv.2010.10.026

    Article  Google Scholar 

  19. Connolly DP, Kouroussis G, Giannopoulos A, Verlinden O, Woodward PK, Forde MC (2014) Assessment of railway vibrations using an efficient scoping model. Soil Dyn Earthq Eng. 58:37–47. doi:10.1016/j.soildyn.2013.12.003

    Article  Google Scholar 

  20. Connolly DP, Kouroussis G, Woodward PK, Giannopoulos A, Verlinden O, Forde MC (2014) Scoping prediction of re-radiated ground-borne noise and vibration near high speed rail lines with variable soils. Soil Dyn Earthq Eng 66:78–88. doi:10.1016/j.soildyn.2014.06.021

    Article  Google Scholar 

  21. Paneiro G, Durão FO, Costa e Silva M, Falcão Neves P (2015) Prediction of ground vibration amplitudes due to urban railway traffic using quantitative and qualitative field data. Transp Res D Transp Environ 40(1):1–13. doi:10.1016/j.trd.2015.07.006

    Article  Google Scholar 

  22. Dinis da Gama C (2013) Unifying energetic approach for the control of ground vibration. In: Kwasniewsky M, Lydzba D (eds) Rock mechanics for resources, energy and environment. CRC Press, Boca Raton, pp 727–732

    Chapter  Google Scholar 

  23. Gardien W, Stuit HG (2003) Modelling of soil vibrations from railway tunnels. J Sound Vib 267(3):605–619. doi:10.1016/S0022-460X(03)00727-2

    Article  Google Scholar 

  24. Jaeger JC, Cook N, Zimmerman RW (2007) Fundamentals of rock mechanics. Blackwell, London

    Google Scholar 

  25. Ju SH (2007) Finite element analysis of structure-borne vibration from high-speed train. Soil Dyn Earthq Eng. 27(3):259–273. doi:10.1016/j.soildyn.2006.06.006

    Article  Google Scholar 

  26. Kutner MH, Nachtsheim CJ, Neter J, Li W (2005) Applied linear statistical models. McGraw-Hill Irwin, New York

    Google Scholar 

  27. Draper NR, Smith H (1998) Applied regression analysis. Wiley, New York

    Book  MATH  Google Scholar 

  28. Strang G (1988) Linear algebra and its applications. Thomson, Belmont

    MATH  Google Scholar 

  29. Beale MH, Hagen MT, Demuth HB (2015) Neural network toolbox™ user’s guide. The MathWorks Inc, Natick

    Google Scholar 

  30. MacKay DJC (1991) Bayesian methods for adaptive models. Ph.D. thesis, California Institute of Technology

  31. Luke S (2013) Essentials of metaheuristics. Lulu. http://cs.gmu.edu/∼sean/book/metaheuristics/. ISBN 978-0-557-14859-2

  32. Thomas FE, Himmelblau DM, Lasdon LS (2001) Optimization of chemical processes. McGraw-Hill, New York

    Google Scholar 

  33. Locatelli M, Schoen F (1999) Random Linkage: a family of acceptance/rejection algorithms for global optimization. Math Prog 85:379–396. doi:10.1007/s101070050062

    Article  MATH  Google Scholar 

  34. Rinnooy AHGK, Timmer GT (1989) Global optimization. In: Nemhauser GL et al (eds) Handbooks in OR and MS, vol 1. Elsevier, Amsterdam

    Google Scholar 

  35. Rinnooy AHGK, Timmer GT (1987) Stochastic global optimization methods, part 2: multi level methods. Math Prog 39:57–78. doi:10.1007/BF02592071

    Article  MATH  Google Scholar 

  36. Abraham B, Ledolter J (2006) Introduction to regression modeling. Thomson, Belmont

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Paneiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paneiro, G., Durão, F.O., Costa e Silva, M. et al. Artificial neural network model for ground vibration amplitudes prediction due to light railway traffic in urban areas. Neural Comput & Applic 29, 1045–1057 (2018). https://doi.org/10.1007/s00521-016-2625-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2625-9

Keywords

Navigation