Skip to main content
Log in

Prescribed performance synchronization for uncertain chaotic systems with input saturation based on neural networks

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, a prescribed performance adaptive neural network synchronization is investigated for a class of unknown chaotic systems in the presence of input saturation and external unknown disturbances. A prescribed performance function is employed to transform the constraint problem of chaotic synchronization control error into the problem of guaranteeing the boundedness of the transformed error. By introducing the Gaussian error function, the input saturation is handled. A neural network-based synchronization control scheme is then developed. Under the developed synchronization control scheme, the synchronization of uncertain chaotic systems is achieved with different initial conditions. Numerical simulation results further demonstrate the effectiveness of the proposed synchronization control scheme for unknown chaotic systems subject to external unknown disturbances and input saturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sun M, Tian LX, Fu Y (2007) An energy resources demand-supply system and its dynamical analysis. Chaos Solitons Fractals 32:168–180

    Article  MathSciNet  MATH  Google Scholar 

  2. Hu JQ, Cao JD, Hayat T (2014) Stability and Hopf bifurcation analysis for an energy resource system. Nonlinear Dyn 78:219–234

    Article  MathSciNet  MATH  Google Scholar 

  3. Ma JH, Chen YS (2001) Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (I). Appl Math Mech 22:1240–1251

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen WC (2008) Nonlinear dynamics and chaos in a fractional-order financial system. Chaos Solitons Fractals 36:1305–1314

    Article  Google Scholar 

  5. Chen AM (2011) Modeling a synthetic biological chaotic system: relaxation oscillators coupled by quorum sensing. Nonlinear Dyn 63:711–718

    Article  MathSciNet  Google Scholar 

  6. Strogatz SH (1994) Nonlinear dynamics and chaos with applications to physics, biology, chemistry, and engineering. Perseus Books Publishing, L. L. C., New York

    MATH  Google Scholar 

  7. Mosekilde E, Maistrenko Y, Postnov D (2002) Chaotic synchronization: applications to living systems. World Scientific, Singapore

    Book  MATH  Google Scholar 

  8. Shao SY, Min FH, Ma ML, Wang ER (2013) Non-inductive modular circuit of dislocated synchronization of fractional-order Chua’s system and its application. Acta Phys Sin 62:130504

    Google Scholar 

  9. Volos CK, Kyprianidis IM, Stouboulos IN (2013) Image encryption process based on chaotic synchronization phenomena. Signal Process 93:1328–1340

    Article  Google Scholar 

  10. Pecora L, Carroll T (1990) Synchronization in chaotic systems. Phys Rev Lett 64:821–824

    Article  MathSciNet  MATH  Google Scholar 

  11. Pan L, Zhou W, Zhou L, Sun K (2011) Chaos synchronization between two different fractional-order hyperchaotic systems. Commun Nonlinear Sci Numer Simul 16:2628–2640

    Article  MathSciNet  MATH  Google Scholar 

  12. Pan Y, Er MJ, Sun T (2012) Composite adaptive fuzzy control for synchronizing generalized Lorenz systems. Chaos Interdiscip J Nonlinear Sci 22:023144

    Article  MathSciNet  MATH  Google Scholar 

  13. Du HY, Zeng QS, Wang CH (2009) Modified function projective synchronization of chaotic system. Chaos Solitons Fractals 42:2399–2404

    Article  MATH  Google Scholar 

  14. Mohammad PA, Khanmohammadi S, Alizadeh G (2011) Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl Math Model 35:3080–3091

    Article  MathSciNet  MATH  Google Scholar 

  15. Wan XJ, Sun JT (2011) Adaptive–impulsive synchronization of chaotic systems. Math Comput Simul 81:1609–1617

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang M (2015) Impulsive synchronization of hyperchaotic Lü systems with two methods. Int J Mod Nonlinear Theory Appl 4:1–9

    Article  Google Scholar 

  17. Al-sawalha MM, Noorani MSM (2009) Anti-synchronization of chaotic systems with uncertain parameters via adaptive control. Phys Lett A 373:2852–2857

    Article  MATH  Google Scholar 

  18. Lin CM, Lin MH, Yeh RG (2013) Synchronization of unified chaotic system via adaptive wavelet cerebellar model articulation controller. Neural Comput Appl 23:965–973

    Article  Google Scholar 

  19. Liu M, Chen H, Zhang S, Fan Z (2014) Exponential synchronization of two totally different chaotic systems based on a unified model. Neural Comput Appl 25:1801–1808

    Article  Google Scholar 

  20. Tu JJ, He HL, Xiong P (2014) Adaptive backstepping synchronization between chaotic systems with unknown Lipschitz constant. Appl Math Comput 236:10–18

    MathSciNet  MATH  Google Scholar 

  21. Koronovskii AA, Moskalenko OI, Hramov AE (2009) On the use of chaotic synchronization for secure communication. Phys Uspekhi 52:1213–1238

    Article  Google Scholar 

  22. Zhu FL (2009) Observer-based synchronization of uncertain chaotic system and its application to secure communications. Chaos Solitons Fractals 40:2384–2391

    Article  MATH  Google Scholar 

  23. Kwon OM, Park JH, Lee SM (2011) Secure communication based on chaotic synchronization via interval time-varying delay feedback control. Nonlinear Dyn 63:239–252

    Article  MathSciNet  MATH  Google Scholar 

  24. Meng D (2015) Neural networks adaptive synchronization for four-dimension energy resource system with unknown dead zones. Neurocomputing 151:1495–1499

    Article  Google Scholar 

  25. Zhang XX, Liu XP, Zhu QD (2014) Adaptive chatter free sliding mode control for a class of uncertain chaotic systems. Appl Math Comput 232:431–435

    MathSciNet  Google Scholar 

  26. Yu YG, Li HX (2010) Adaptive generalized function projective synchronization of uncertain chaotic systems. Nonlinear Anal Real World Appl 11:2456–2464

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen M, Zhou Y, Guo WW (2014) Robust tracking control for uncertain MIMO nonlinear systems with input saturation using RWNNDO. Neurocomputing 144:436–447

    Article  Google Scholar 

  28. Mei R, Chen M, Guo WW (2015) Robust adaptive control scheme for optical tracking telescopes with unknown disturbances. Optik Int J Light Electron Opt 126:1185–1190

    Article  Google Scholar 

  29. Pan Y, Liu Y, Yu H (2015) Simplified adaptive neural control of strict-feedback nonlinear systems. Neurocomputing 159:251–256

    Article  Google Scholar 

  30. Pan Y, Er MJ, Huang D, Wang Q (2011) Adaptive fuzzy control with guaranteed convergence of optimal approximation error. IEEE Trans Fuzzy Syst 19:807–818

    Article  Google Scholar 

  31. Pan Y, Er MJ (2013) Enhanced adaptive fuzzy control with optimal approximation error convergence. IEEE Trans Fuzzy Syst 21:1123–1132

    Article  Google Scholar 

  32. Pan Y, Zhou Y, Sun T, Er MJ (2013) Composite adaptive fuzzy \({H^\infty }\) tracking control of uncertain nonlinear systems. Neurocomputing 99:15–24

    Article  Google Scholar 

  33. Na J, Ren X, Herrmann G, Qiao Z (2011) Adaptive neural dynamic surface control for servo systems with unknown dead-zone. Control Eng Pract 19:1328–1343

    Article  Google Scholar 

  34. Na J, Ren X, Shang C, Guo Y (2012) Adaptive neural network predictive control for nonlinear pure feedback systems with input delay. J Process Control 22:194–206

    Article  Google Scholar 

  35. Na J, Herrmann G, Ren XM (2010) Neural network control of nonlinear time-delay system with unknown dead-zone and its application to a robotic servo system. Trends Intell Robot 103:338–345

    Article  Google Scholar 

  36. Na J, Ren XM, Zheng D (2013) Adaptive control for nonlinear pure-feedback systems with high-order sliding mode observer. IEEE Trans Neural Netw Learn Syst 24:370–382

    Article  Google Scholar 

  37. Li YM, Tong SC, Li TS, Jing XJ (2014) Adaptive fuzzy control of uncertain stochastic nonlinear systems with unknown dead zone using small-gain approach. Fuzzy Sets Syst 235:1–24

    Article  MathSciNet  MATH  Google Scholar 

  38. Li YM, Tong SC, Li TS (2014) Adaptive fuzzy output-feedback control for output constrained nonlinear systems in the presence of input saturation. Fuzzy Sets Syst 248:138–155

    Article  MathSciNet  MATH  Google Scholar 

  39. Li YM, Tong SC, Li TS (2013) Direct adaptive fuzzy backstepping control of uncertain nonlinear systems in the presence of input saturation. Neural Comput Appl 23:1207–1216

    Article  Google Scholar 

  40. Li YM, Tong SC, Li TS (2013) Adaptive fuzzy output feedback control of nonlinear uncertain systems with unknown backlash-like hysteresis based on modular design. Neural Comput Appl 23:261–270

    Article  Google Scholar 

  41. Liu YJ, Chen CLP, Wen GX, Tong SC (2011) Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems. IEEE Trans Neural Netw 22:1162–1167

    Article  Google Scholar 

  42. Liu YJ, Tong SC, Wang D, Li TS, Chen CLP (2011) Adaptive neural output feedback controller design with reduced-order observer for a class of uncertain nonlinear SISO systems. IEEE Trans Neural Netw 22:1328–1334

    Article  Google Scholar 

  43. Wang HQ, Chen B, Liu K, Liu XP, Lin C (2014) Adaptive neural tracking control for a class of nonstrict-feedback stochastic nonlinear systems with unknown backlash-like hysteresis. IEEE Trans Neural Netw Learn Syst 25:947–958

    Article  Google Scholar 

  44. Wang HQ, Chen B, Lin C (2013) Adaptive neural tracking control for a class of perturbed pure-feedback nonlinear systems. Nonlinear Dyn 72:207–220

    Article  MathSciNet  MATH  Google Scholar 

  45. Li TS, Wang D, Feng G, Tong SC (2010) A DSC approach to robust adaptive NN tracking control for strict-feedback nonlinear systems. IEEE Trans Syst Man Cybern Part B Cybern 40:915–927

    Article  Google Scholar 

  46. Li ZJ, Ge SS, Ming A (2007) Adaptive robust motion/force control of holonomic-constrained nonholonomic mobile manipulators. IEEE Trans Syst Man Cybern Part B Cybern 37:607–616

    Article  Google Scholar 

  47. Li ZJ, Ge SS, Adams M, Wijesoma WS (2008) Robust adaptive control of uncertain force/motion constrained nonholonomic mobile manipulators. Automatica 44:776–784

    Article  MathSciNet  Google Scholar 

  48. Chen M, Ge SS, Ren BB (2011) Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automatica 47:452–465

    Article  MathSciNet  MATH  Google Scholar 

  49. Ge SS, Li GY, Zhang J, Lee TH (2004) Direct adaptive control for a class of MIMO nonlinear systems using neural networks. IEEE Trans Autom Control 49:2001–2006

    Article  MathSciNet  MATH  Google Scholar 

  50. Chen M, Ge SS, How BVE (2010) Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities. IEEE Trans Neural Netw 21:796–812

    Article  Google Scholar 

  51. Chen M, Tao G, Jiang B (2014) Dynamic surface control using neural networks for a class of uncertain nonlinear systems with input saturation. IEEE Trans Neural Netw Learn Syst 26:2086–2097

    Article  MathSciNet  Google Scholar 

  52. Yu JP, Shi P, Dong WJ, Chen B, Lin C (2015) Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors. IEEE Trans Neural Netw Learn Syst 26:640–645

    Article  MathSciNet  Google Scholar 

  53. Bechlioulis CP, Rovithakis GA (2008) Prescribed performance adaptive control of SISO feedback linearizable systems with disturbances. In: 16th mediterranean conference on control and automation pp 1035–1040

  54. Bechlioulis CP, Rovithakis GA (2008) Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans Autom Control 53:2090–2099

    Article  MathSciNet  MATH  Google Scholar 

  55. Kostarigka AK, Rovithakis GA (2011) Prescribed performance output feedback/observer-free robust adaptive control of uncertain systems using neural networks. IEEE Trans Syst Man Cybern Part B Cybern 41:1483–1494

    Article  Google Scholar 

  56. Kostarigka AK, Rovithakis GA (2012) Adaptive dynamic output feedback neural network control of uncertain MIMO nonlinear systems with prescribed performance. IEEE Trans Neural Netw Learn Syst 23:138–149

    Article  Google Scholar 

  57. Meng WC, Yang QM, Ying Y, Sun Y, Yang ZY, Sun YX (2013) Adaptive power capture control of variable-speed wind energy conversion systems with guaranteed transient and steady-state performance. IEEE Trans Energy Convers 28:716–725

    Article  Google Scholar 

  58. Na J, Chen Q, Ren X, Guo Y (2014) Adaptive prescribed performance motion control of servo mechanisms with friction compensation. IEEE Trans Ind Electron 61:486–494

    Article  Google Scholar 

  59. Lü JH, Chen GR (2002) A new chaotic attractor coined. Int J Bifurc Chaos 12:659–661

    Article  MathSciNet  MATH  Google Scholar 

  60. Ma J, Zheng Z, Li P (2015) Adaptive dynamic surface control of a class of nonlinear systems with unknown direction control gains and input saturation. IEEE Trans Cybern 45:728–741

    Article  Google Scholar 

  61. Ma J, Ge SS, Zheng Z, Hu D (2015) Adaptive NN control of a class of nonlinear systems with asymmetric saturation actuators. IEEE Trans Neural Netw Learn Syst 26:1532–1538

    Article  MathSciNet  Google Scholar 

  62. Andrews LC (1998) Special functions of mathematics for engineers, 2nd edn. SPIE, Bellingham

    MATH  Google Scholar 

  63. Apostol TM (1963) Mathematical analysis. Addison-Wesley, Reading

    Google Scholar 

  64. Ge SS, Hang CC, Lee TH, Zhang T (2001) Stable adaptive neural network control. Kluwer, Norwell

    MATH  Google Scholar 

  65. Tee KP, Ge SS (2006) Control of fully actuated ocean surface vessels using a class of feedforward approximators. IEEE Trans Control Syst Technol 14:750–756

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by National Nature Science Foundation of China (No. 61573184), 333 Talents Project in Jiangsu Province (No. BRA2015359), the Six Talents Peak Project of Jiangsu Province (No. 2012-XXRJ-010), the Fundamental Research Funds for the Central Universities (No. NE2016101) and Jiangsu Innovation Program for Graduate Education (No. KYLX16_0375).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mou Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, S., Chen, M. & Yan, X. Prescribed performance synchronization for uncertain chaotic systems with input saturation based on neural networks. Neural Comput & Applic 29, 1349–1361 (2018). https://doi.org/10.1007/s00521-016-2629-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2629-5

Keywords

Navigation