Skip to main content
Log in

Optimization of production time in the multi-pass milling process via a Robust Grey Wolf Optimizer

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In order to optimize multi-pass milling process, selection of optimal values for the parameters of the process is of great importance. The mathematical model for optimization of multi-pass milling process is a multi-constrained nonlinear programing formulation which is hard to be solved. Therefore, a novel robust meta-heuristic algorithm named Robust Grey Wolf Optimizer (RGWO) is proposed. In order to develop a RGWO, a robust design methodology named Taguchi method is utilized to tune the parameters of the algorithm. Therefore, in contradiction to previous researches, there is no need to design costly experiments to obtain the optimal values of the parameters of the GWO. In addition, an efficient constraint handling approach is implemented to handle complex constraints of the problem. A real-world problem is adopted to show the effectiveness and efficiency of the proposed RGWO in optimizing the milling process within different strategies. The results indicated that the RGWO outperforms the other solution methods in the literature as well as two novel meta-heuristic algorithms by obtaining better and feasible solutions for all cutting strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513. doi:10.1007/s00521-015-1870-7

    Article  Google Scholar 

  2. Saremi S, Mirjalili S, Lewis A (2014) Biogeography-based optimisation with chaos. Neural Comput Appl 25(5):1077–1097. doi:10.1007/s00521-014-1597-x

    Article  Google Scholar 

  3. Salimi H (2015) Stochastic fractal search: a powerful metaheuristic algorithm. Knowl Based Syst 75:1–18. doi:10.1016/j.knosys.2014.07.025

    Article  Google Scholar 

  4. Mirjalili S, Mirjalili SM, Yang XS (2014) Binary bat algorithm. Neural Comput Appl 25(3–4):663–681. doi:10.1007/s00521-013-1525-5

    Article  Google Scholar 

  5. Mirjalili S, Wang GG, Coelho LDS (2014) Binary optimization using hybrid particle swarm optimization and gravitational search algorithm. Neural Comput Appl 25(6):1423–1435. doi:10.1007/s00521-014-1629-6

    Article  Google Scholar 

  6. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey Wolf Optimizer. Adv Eng Soft 69:46–61. doi:10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  7. Jayakumar N, Subramanian S, Ganesan S, Elanchezhian EB (2016) Grey wolf optimization for combined heat and power dispatch with cogeneration systems. Int J Elect Power Energy Sys 74:252–264. doi:10.1016/j.ijepes.2015.07.031

    Article  Google Scholar 

  8. Song X, Tang L, Zhao S, Zhang X, Li L, Huang J, Cai W (2015) Grey Wolf Optimizer for parameter estimation in surface waves. Soil Dyn Earthq Eng 75:147–157. doi:10.1016/j.soildyn.2015.04.004

    Article  Google Scholar 

  9. Pradhan M, Roy PK, Pal T (2016) Grey wolf optimization applied to economic load dispatch problems. Int J Elect Power Energy Sys 83:325–334. doi:10.1016/j.ijepes.2016.04.034

    Article  Google Scholar 

  10. Medjahed SA, Saadi TA, Benyettou A, Ouali M (2016) Gray Wolf Optimizer for hyperspectral band selection. Appl Soft Comput 40:178–186. doi:10.1016/j.asoc.2015.09.045

    Article  Google Scholar 

  11. Roy R (1990) A primer on the Taguchi method. Society of Manufacturing Engineers, New York

    MATH  Google Scholar 

  12. Taguchi G, Chowdhury S, Wu Y (2005) Taguchi’s quality engineering handbook. Wiley, Hoboken

    MATH  Google Scholar 

  13. Najafi AA, Niaki STA, Shahsavar M (2009) A parameter-tuned genetic algorithm for the resource investment problem with discounted cash flows and generalized precedence relations. Comput Oper Res 36(11):2994–3001. doi:10.1016/j.cor.2009.01.016

    Article  MATH  Google Scholar 

  14. Sadeghi J, Sadeghi A, Saidi-Mehrabad M (2011) A parameter-tuned genetic algorithm for vendor managed inventory model for a case single-vendor single-retailer with multi-product and multi-constraint. J Optim Ind Eng 4(9):57–67

    Google Scholar 

  15. Sadeghi J, Sadeghi S, Niaki STA (2014) A hybrid vendor managed inventory and redundancy allocation optimization problem in supply chain management: an NSGA-II with tuned parameters. Comput Oper Res 41:53–64. doi:10.1016/j.cor.2013.07.024

    Article  MathSciNet  MATH  Google Scholar 

  16. Sonmez AI, Baykasoglu A, Dereli T, Filiz IH (1999) Dynamic optimization of multi-pass milling operations via geometric programming. Int J Mach Tools Manuf 39:297–320. doi:10.1016/S0890-6955(98)00027-3

    Article  Google Scholar 

  17. Wang ZG, Rahman M, Wong YS, Sun J (2005) Optimization of multi-pass milling using parallel genetic algorithm and parallel genetic simulated annealing. Int J Mach Tools Manuf 45:1726–1734. doi:10.1016/j.ijmachtools.2005.03.009

    Article  Google Scholar 

  18. Onwubolu GC (2006) Performance-based optimization of multi-pass face milling operations using Tribes. Int J Mach Tools Manuf 46:717–727. doi:10.1016/j.ijmachtools.2005.07.041

    Article  Google Scholar 

  19. Baskar N, Asokan P, Saravanan R, Prabhaharan G (2006) Selection of optimal machining parameters for multi-tool milling operations using a memetic algorithm. J Mater Process Technol 174:239–249. doi:10.1016/j.jmatprotec.2005.09.032

    Article  Google Scholar 

  20. Yıldız AR (2009) A novel hybrid immune algorithm for global optimization in design and manufacturing. Robot Comput Integr Manuf 25:261–270. doi:10.1016/j.rcim.2007.08.002

    Article  Google Scholar 

  21. Gao L, Huang J, Li X (2012) An effective cellular particle swarm optimization for parameters optimization of a multi-pass milling process. Appl Soft Comput 12:3490–3499. doi:10.1016/j.asoc.2012.06.007

    Article  Google Scholar 

  22. Rao RV, Pawar PJ (2010) Parameter optimization of a multi-pass milling process using non-traditional optimization algorithms. Appl Soft Comput 10:445–456. doi:10.1016/j.asoc.2009.08.007

    Article  Google Scholar 

  23. Pawar PJ, Rao RV (2013) Parameter optimization of machining processes using teaching–learning-based optimization algorithm. Int J Adv Manuf Technol 67:995–1006. doi:10.1007/s00170-012-4524-2

    Article  Google Scholar 

  24. Yang WA, Guo Y, Liao WH (2011) Optimization of multi-pass face milling using a fuzzy particle swarm optimization algorithm. Int J Adv Manuf Technol 54:45–57. doi:10.1007/s00170-010-2927-5

    Article  Google Scholar 

  25. Mellal MA, Williams EJ (2016) Total production time minimization of a multi-pass milling process via cuckoo optimization algorithm. Int J Adv Manuf Technol 1:1–8. doi:10.1007/s00170-016-8498-3

    Google Scholar 

  26. Mellal MA, Williams EJ (2014) Parameter optimization of advanced machining processes using cuckoo optimization algorithm and hoopoe heuristic. J Intell Manuf. doi:10.1007/s10845-014-0925-4

    Google Scholar 

  27. Mellal MA, Williams EJ (2015) Cuckoo optimization algorithm for unit production cost in multi-pass turning operations. Int J Adv Manuf Technol 76(1–4):647–656. doi:10.1007/s00170-014-6309-2

    Article  Google Scholar 

  28. Pal SK, Chakraborty D (2005) Surface roughness prediction in turning using artificial neural network. Neural Comput Appl 14(4):319–324. doi:10.1007/s00521-005-0468-x

    Article  Google Scholar 

  29. Venkatesan D, Kannan K, Saravanan R (2009) A genetic algorithm-based artificial neural network model for the optimization of machining processes. Neural Comput Appl 18(2):135–140. doi:10.1007/s00521-007-0166-y

    Article  Google Scholar 

  30. Prabhu S, Uma M, Vinayagam BK (2015) Surface roughness prediction using Taguchi-fuzzy logic-neural network analysis for CNT nanofluids based grinding process. Neural Comput Appl 26(1):41–55. doi:10.1007/s00521-014-1696-8

    Article  Google Scholar 

  31. Arriandiaga A, Portillo E, Sánchez JA, Cabanes I, Pombo I (2016) A new approach for dynamic modelling of energy consumption in the grinding process using recurrent neural networks. Neural Comput Appl 27(6):1577–1592. doi:10.1007/s00521-015-1957-1

    Article  Google Scholar 

  32. Arriandiaga A, Portillo E, Sánchez JA, Cabanes I, Zubizarreta A (2016) Recurrent ANN-based modelling of the dynamic evolution of the surface roughness in grinding. Neural Comput Appl 1–15. doi:10.1007/s00521-016-2568-1

  33. Gen M (1997) Genetic algorithm and engineering design. Wiley, New York

    Google Scholar 

  34. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110:151–166. doi:10.1016/j.compstruc.2012.07.010

    Article  Google Scholar 

  35. Sadollah A, Eskandar H, Bahreininejad A, Kim JH (2015) Water cycle algorithm for solving multi-objective optimization problems. Soft Comput 19(9):2587–2603. doi:10.1007/s00500-014-1424-4

    Article  Google Scholar 

  36. Sadollah A, Eskandar H, Kim JH (2015) Water cycle algorithm for solving constrained multi-objective optimization problems. Appl Soft Comput 27:279–298. doi:10.1016/j.asoc.2014.10.042

    Article  Google Scholar 

  37. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks. pp 1942–1948. doi:10.1109/ICNN.1995.488968

  38. Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: The 1998 IEEE international conference on evolutionary computation proceedings, 1998. IEEE world congress on computational intelligence. pp 69–73. doi:10.1109/ICEC.1998.699146

  39. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248. doi:10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  40. Khalilpourazari S, Pasandideh SHR (2016) Multi-item EOQ model with nonlinear unit holding cost and partial backordering: moth-flame optimization algorithm. J Ind Prod Eng 1:1–10. doi:10.1080/21681015.2016.1192068

    Google Scholar 

  41. Coello CAC (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191:1245–1287. doi:10.1016/S0045-7825(01)00323-1

    Article  MathSciNet  MATH  Google Scholar 

  42. Khalilpourazari S, Pasandide SHR, Niaki STA (2016) Optimization of multi-product economic production quantity model with partial backordering and physical constraints: SQP, SFS, SA, and WCA. Appl Soft Comput. doi:10.1016/j.asoc.2016.08.054

    Google Scholar 

  43. Homaifar A, Lai SHY, Qi X (1994) Constrained optimization via genetic algorithms. Simulation 62:242–254. doi:10.1177/003754979406200405

    Article  Google Scholar 

  44. Khalilpourazari S, Khalilpourazary S (2016) A lexicographic weighted Tchebycheff approach for multi-constrained multi-objective optimization of the surface grinding process. Eng Optim. doi:10.1080/0305215X.2016.1214437

    Google Scholar 

  45. Khalilpourazari S, Pasandideh SHR (2016) Bi-objective optimization of multi-product EPQ model with backorders, rework process and random defective rate. In: 12th international conference on industrial engineering. pp 36–40. doi:10.1109/INDUSENG.2016.7519346

  46. Khalilpourazari S, Mohammadi M (2016) Optimization of closed-loop Supply chain network design: a water cycle algorithm approach. In: 12th international conference on industrial engineering. pp 41–45. doi:10.1109/INDUSENG.2016.7519347

  47. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073. doi:10.1007/s00521-015-1920-1

    Article  Google Scholar 

  48. Yang Y, Li X, Gao L (2013) Parameters optimization of a multipass milling process based on imperialist competitive algorithm. In: IEEE 17th international conference on computer supported cooperative work in design (CSCWD), pp 406–410. doi:10.1109/CSCWD.2013.6580997

  49. Huang J, Gao L, Li X (2015) An effective teaching-learning-based cuckoo search algorithm for parameter optimization problems in structure designing and machining processes. Appl Soft Comput 36:349–356. doi:10.1016/j.asoc.2015.07.031

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saman Khalilpourazary.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalilpourazari, S., Khalilpourazary, S. Optimization of production time in the multi-pass milling process via a Robust Grey Wolf Optimizer. Neural Comput & Applic 29, 1321–1336 (2018). https://doi.org/10.1007/s00521-016-2644-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2644-6

Keywords

Navigation