Skip to main content
Log in

Hybridizing artificial bee colony with monarch butterfly optimization for numerical optimization problems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The aim of the study was to propose a new metaheuristic algorithm that combines parts of the well-known artificial bee colony (ABC) optimization with elements from the recent monarch butterfly optimization (MBO) algorithm. The idea is to improve the balance between the characteristics of exploration and exploitation in those algorithms in order to address the issues of trapping in local optimal solution, slow convergence, and low accuracy in numerical optimization problems. This article introduces a new hybrid approach by modifying the butterfly adjusting operator in MBO algorithm and uses that as a mutation operator to replace employee phase of the ABC algorithm. The new algorithm is called Hybrid ABC/MBO (HAM). The HAM algorithm is basically employed to boost the exploration versus exploitation balance of the original algorithms, by increasing the diversity of the ABC search process using a modified operator from MBO algorithm. The resultant design contains three components: The first and third component implements global search, while the second one performs local search. The proposed algorithm was evaluated using 13 benchmark functions and compared with the performance of nine metaheuristic methods from swarm intelligence and evolutionary computing: ABC, MBO, ACO, PSO, GA, DE, ES, PBIL, and STUDGA. The experimental results show that the HAM algorithm is clearly superior to the standard ABC and MBO algorithms, as well as to other well-known algorithms, in terms of achieving the best optimal value and convergence speed. The proposed HAM algorithm is a promising metaheuristic technique to be added to the repertory of optimization techniques at the disposal of researchers. The next step is to look into application fields for HAM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Manjarres D, Landa-Torres I, Gil-Lopez S, Del Ser J, Bilbao MN, Salcedo-Sanz S, Geem ZW (2013) A survey on applications of the harmony search algorithm. Eng Appl Artif Intell 26(8):1818–1831

    Article  Google Scholar 

  2. Yang X-S (2010) Nature-inspired metaheuristic algorithms. Luniver press, Bristol

    Google Scholar 

  3. Gandomi AH, Yang XS, Talatahari S, Alavi AH (eds) (2013) Metaheuristic applications in structures and infrastructures. Elsevier, Newnes

    Google Scholar 

  4. Yang X-S, Suash D, Thomas H, Xingshi H (2015) Attraction and diffusion in nature-inspired optimization algorithms. Neural Comput Appl 26:1–8

    Article  Google Scholar 

  5. Ouaarab A, Ahiod B, Yang X-S (2014) Discrete cuckoo search algorithm for the travelling salesman problem. Neural Comput Appl 24(7–8):1659–1669

    Article  Google Scholar 

  6. Horst R, Tuy H (2013) Global optimization: Deterministic approaches. Springer, New York

    MATH  Google Scholar 

  7. Wikipedia. Mathematical optimization. http://en.wikipedia.org/wiki/Numericaloptimization

  8. Wang G, Guo L, Wang H, Duan H, Liu L, Li J (2014) Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput Appl 24(3–4):853–871

    Article  Google Scholar 

  9. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  10. Wang G, Guo L (2013) A novel hybrid bat algorithm with harmony search for global numerical optimization. J Appl Math. doi:10.1155/2013/696491

    MathSciNet  MATH  Google Scholar 

  11. Zhang WY, Xu S, Li SJ (2012) Necessary conditions for weak sharp minima in cone-constrained optimization problems. Abstr Appl Anal. doi:10.1155/2012/909520

    MathSciNet  MATH  Google Scholar 

  12. Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimization. Int J Bio-Inspired Comput 2(2):78–84

    Article  Google Scholar 

  13. Yang X-S, Deb S (2014) Cuckoo search: recent advances and applications. Neural Comput Appl 24(1):169–174

    Article  Google Scholar 

  14. Blum C, Puchinger J, Raidl GR, Roli A (2011) Hybrid metaheuristics in combinatorial optimization: a survey. Appl Soft Comput 11(6):4135–4151

    Article  MATH  Google Scholar 

  15. Li X, Yin M (2014) Self-adaptive constrained artificial bee colony for constrained numerical optimization. Neural Comput Appl 24(3–4):723–734

    Article  Google Scholar 

  16. Karaboga D, Basturk Bahriye (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  17. Ghanem W, Jantan A (2014) Using hybrid artificial bee colony algorithm and particle swarm optimization for training feed-forward neural networks. J Theor Appl Inf Technol 67(3):664–674

    Google Scholar 

  18. Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. Proc Sixth Int Symp Micro Mach Human Science 1:39–43

    Article  Google Scholar 

  19. Mirjalili S, Wang GG, Coelho LDS (2014) Binary optimization using hybrid particle swarm optimization and gravitational search algorithm. Neural Comput Appl 25(6):1423–1435

    Article  Google Scholar 

  20. Ding S, Zhang Y, Chen J, Jia W (2013) Research on using genetic algorithms to optimize Elman neural networks. Neural Comput Appl 23(2):293–297

    Article  Google Scholar 

  21. Ahmadi MA, Shadizadeh SR (2012) Prediction of asphaltene precipitation by using hybrid genetic algorithm and particle swarm optimization and neural network. Neural Comput Appl 23(2):1–7

    Google Scholar 

  22. Yang X-S (2009) Firefly algorithms for multimodal optimization. In: Watanabe O, Zeugmann T (eds) Stochastic algorithms: foundations and applications. Springer, Berlin, pp 169–178

    Chapter  Google Scholar 

  23. Fister I, Yang X-S, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evol Comput 13:34–46

    Article  Google Scholar 

  24. Yang X-S, Suash D (2009) Cuckoo search via Lévy flights. In: World Congress on Nature & biologically inspired computing, 2009. NaBIC 2009. IEEE, pp 210–214

  25. Simon Dan (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  26. Wang G-G, Gandomi AH, Alavi AH (2014) An effective krill herd algorithm with migration operator in biogeography-based optimization. Appl Math Model 38(9):2454–2462

    Article  MathSciNet  Google Scholar 

  27. Colorni A, Dorigo M, Maniezzo V (1991) Distributed optimization by ant colonies. Proc First Eur Conf Artif Life 142:134–142

    Google Scholar 

  28. Dorigo M, Blum C (2005) Ant colony optimization theory: a survey. Theor Comput Sci 344(2):243–278

    Article  MathSciNet  MATH  Google Scholar 

  29. Socha K, Blum C (2007) An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training. Neural Comput Appl 16(3):235–247

    Article  Google Scholar 

  30. Li X, Zhang J, Yin M (2014) Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput Appl 24(7–8):1867–1877

    Article  Google Scholar 

  31. Meng, X, Liu Y, Gao X, Zhang H (2014) A new bio-inspired algorithm: chicken swarm optimization. In: Advances in swarm intelligence. Springer International Publishing, pp 86–94

  32. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  33. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845

    Article  MathSciNet  MATH  Google Scholar 

  34. Li J, Tang Y, Hua C, Guan X (2014) An improved krill herd algorithm: krill herd with linear decreasing step. Appl Math Comput 234:356–367

    MathSciNet  MATH  Google Scholar 

  35. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  36. Gandomi AH (2014) Interior search algorithm (ISA): a novel approach for global optimization. ISA Trans 53(4):1168–1183

    Article  Google Scholar 

  37. Wang GG, Deb S, Cui Z (2015) Monarch butterfly optimization. Neural Comput Appl 26:1–20

    Article  Google Scholar 

  38. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization (NICSO 2010), vol 284. Springer, Berlin Heidelberg, pp 65–74

    Chapter  Google Scholar 

  39. Gandomi AH, Yang XS, Alavi AH, Talatahari S (2013) Bat algorithm for constrained optimization tasks. Neural Comput Appl 22(6):1239–1255

    Article  Google Scholar 

  40. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Article  Google Scholar 

  41. BoussaïD I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci 237:82–117

    Article  MathSciNet  MATH  Google Scholar 

  42. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization, vol 200. Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department

  43. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8(1):687–697

    Article  Google Scholar 

  44. Bansal JC, Sharma H, Jadon SS (2013) Artificial bee colony algorithm: a survey. Int J Adv Intell Paradig 5(1–2):123–159

    Article  Google Scholar 

  45. Bolaji ALA, Khader AT, Al-Betar MA, Awadallah MA (2013) Artificial bee colony algorithm, its variants and applications: A survey. J Theor Appl Inf Technol 47(2)

  46. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102

    Article  Google Scholar 

  47. Storn R, Price K (1995) Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces, vol 3. ICSI, Berkeley

    MATH  Google Scholar 

  48. Hans-Georg Beyer (2001) The theory of evolution strategies. Natural Computing Series. Springer, New York, pp 1–373

    Google Scholar 

  49. Khatib W, Fleming PJ (1998) The stud GA: a mini revolution. In: International conference on parallel problem solving from nature. Springer Berlin Heidelberg, pp 683–691

  50. Yang S, Yao Xin (2005) Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Comput 9(11):815–834

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research has been funded by Universiti Sains Malaysia under USM Fellowship 2016 [APEX (1002/CIPS/ATSG4001)], also partially supported by the Fundamental Research Grant Scheme (FRGS) for “Content-Based Analysis Framework for Better Email Forensic and Cyber Investigation” [203/PKOMP/6711426].

Funding

This study was funded by USM Fellowship 2016 (Grant Number [APEX (1002/CIPS/ATSG4001)]) and the Fundamental Research Grant Scheme (FRGS) for “Content-Based Analysis Framework for Better Email Forensic and Cyber Investigation” [203/PKOMP/6711426].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waheed A. H. M. Ghanem.

Ethics declarations

Conflict of interest

W. Ghanem declares that he has no conflict of interest. A. Jantan declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanem, W.A.H.M., Jantan, A. Hybridizing artificial bee colony with monarch butterfly optimization for numerical optimization problems. Neural Comput & Applic 30, 163–181 (2018). https://doi.org/10.1007/s00521-016-2665-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2665-1

Keywords

Navigation