Skip to main content

Advertisement

Log in

Bio-inspired computational heuristics for parameter estimation of nonlinear Hammerstein controlled autoregressive system

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this study, strength of evolutionary computational intelligence based on genetic algorithms (GAs) is exploited for parameter identification of nonlinear Hammerstein controlled autoregressive (NHCAR) systems. The fitness function is constructed for the NHCAR system by defining an error function in the mean square sense. Unknown adjustable weights of the system are optimized with GAs, used as an effective tool for effective global search. Comparative analysis of the proposed scheme is made from true parameters of the systems for a number of scenarios based on different levels of signal-to-noise ratios. The validation of the performance is made through statistics based on sufficiently large number of runs using indices of mean absolute error, variance account for, and Thiel’s inequality coefficient as well as their global versions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Corbier C, El Badaoui M, Ugalde HMR (2015) Huberian approach for reduced order ARMA modeling of neurodegenerative disorder signal. Signal Process 113:273–284

    Article  Google Scholar 

  2. Ding F, Wang Y, Ding J (2015) Recursive least squares parameter identification algorithms for systems with colored noise using the filtering technique and the auxilary model. Digit Signal Process 37:100–108

    Article  Google Scholar 

  3. Raja MAZ, Chaudhary NI (2014) Adaptive strategies for parameter estimation of Box–Jenkins systems. IET Signal Process 8(9):968–980

    Article  Google Scholar 

  4. Zhang T, Qian W, Zhang G, Ye F, Gao C, Zhao H (2016) Parameter estimation of MC-CDMA signals based on modified cyclic autocorrelation. Digit Signal Process 54:46–53

    Article  Google Scholar 

  5. Chaudhary NI, Raja MAZ, Aslam MS, Ahmed N (2016) Novel generalization of Volterra LMS algorithm to fractional order with application to system identification. Neural Comput Appl. doi:10.1007/s00521-016-2548-5

    Google Scholar 

  6. Raja MAZ, Chaudhary NI (2015) Two-stage fractional least mean square identification algorithm for parameter estimation of CARMA systems. Signal Process 107:327–339

    Article  Google Scholar 

  7. Wang Z, Ruimin H, Shao Z, Hou Z (2014) Parameter estimation in sparse representation based face hallucination. Digit Signal Process 31:28–34

    Article  Google Scholar 

  8. Mao Y, Ding F (2015) Multi-innovation stochastic gradient identification for Hammerstein controlled autoregressive autoregressive systems based on the filtering technique. Nonlinear Dyn 79(3):1745–1755

    Article  MATH  Google Scholar 

  9. Ding F, Liu XP, Liu G (2011) Identification methods for Hammerstein nonlinear systems. Digit Signal Process 21(2):215–238

    Article  MathSciNet  Google Scholar 

  10. Chen H, Ding F, Xiao Y (2015) Decomposition-based least squares parameter estimation algorithm for input nonlinear systems using the key term separation technique. Nonlinear Dyn 79(3):2027–2035

    Article  MATH  Google Scholar 

  11. Chen J, Ding F (2010) Modified stochastic gradient identification algorithms with fast convergence rates. J Vib Control 17(9):1281–1286. doi:10.1177/1077546310376989

    Article  MathSciNet  MATH  Google Scholar 

  12. Mao Y, Ding F (2015) A novel data filtering based multi-innovation stochastic gradient algorithm for Hammerstein nonlinear systems. Digit Signal Process 46:215–225

    Article  MathSciNet  Google Scholar 

  13. Chaudhary NI, Raja MAZ (2015) Identification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithms. Nonlinear Dyn 79(2):1385–1397

    Article  MathSciNet  MATH  Google Scholar 

  14. Chaudhary NI, Raja MAZ (2015) Design of fractional adaptive strategy for input nonlinear Box–Jenkins systems. Signal Process 116:141–151

    Article  Google Scholar 

  15. Shen Q, Ding F (2016) Hierarchical multi-innovation extended stochastic gradient algorithms for input nonlinear multivariable OEMA systems by the key-term separation principle. Nonlinear Dyn 85(1):499–507

    Article  MathSciNet  MATH  Google Scholar 

  16. Ding F, Shi Y, Chen T (2007) Auxiliary model-based least-squares identification methods for Hammerstein output-error systems. Syst Control Lett 56(5):373–380

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu H, Ding R (2014) Least squares based iterative identification algorithms for input nonlinear controlled autoregressive systems based on the auxiliary model. Nonlinear Dyn 76(1):777–784

    Article  MathSciNet  MATH  Google Scholar 

  18. Li G et al (2011) Identification of a class of nonlinear autoregressive models with exogenous inputs based on kernel machines. IEEE Trans Signal Process 59(5):2146–2159

    Article  MathSciNet  Google Scholar 

  19. Xiong W, Fan W, Ding R (2012) Least-squares parameter estimation algorithm for a class of input nonlinear systems. J Appl Math 2012, Article ID 684074. doi:10.1155/2012/684074

  20. Chen H, Ding F (2015) Hierarchical least squares identification for Hammerstein nonlinear controlled autoregressive systems. Circuits Syst Signal Process 34(1):61–75

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen H, Ding F (2013) Decomposition based recursive least squares parameter estimation for Hammerstein nonlinear controlled autoregressive systems. In: IEEE American control conference (ACC)

  22. Xiao Y, Song G, Liao Y, Ding R (2012) Multi-innovation stochastic gradient parameter estimation for input nonlinear controlled autoregressive models. Int J Control Autom Syst 10(3):639–643

    Article  Google Scholar 

  23. Chaudhary NI, Raja MAZ, Khan JA, Aslam MS (2013) Identification of input nonlinear control autoregressive systems using fractional signal processing approach. Sci World J 2013, Article ID 467276. doi:10.1155/2013/467276

  24. Chaudhary NI, Raja MAZ, Khan AUR (2015) Design of modified fractional adaptive strategies for Hammerstein nonlinear control autoregressive systems. Nonlinear Dyn 82(4):1811–1830

    Article  Google Scholar 

  25. Raja MAZ, Farooq U, Chaudhary NI, Wazwaz AM (2016) Stochastic numerical solver for nanofluidic problems containing multi-walled carbon nanotubes. Appl Soft Comput 38:561–586. doi:10.1016/j.asoc.2015.10.015 (in press)

    Article  Google Scholar 

  26. Chiroma H, Abdulkareem S, Herawan T (2015) Evolutionary neural network model for West Texas Intermediate crude oil price prediction. Appl Energy 142:266–273

    Article  Google Scholar 

  27. Onan A, Bulut H, Korukoglu S (2016) An improved ant algorithm with LDA-based representation for text document clustering. J Inf Sci. doi:10.1177/0165551516638784

    Google Scholar 

  28. Raja MAZ (2014) Solution of the one-dimensional Bratu equation arising in the fuel ignition model using ANN optimised with PSO and SQP. Connect Sci 26(3):195–214. doi:10.1080/09540091.2014.907555

    Article  Google Scholar 

  29. Onan A, Korukoğlu S, Bulut H (2016) A multiobjective weighted voting ensemble classifier based on differential evolution algorithm for text sentiment classification. Expert Syst Appl 62:1–16. doi:10.1016/j.eswa.2016.06.005

    Article  Google Scholar 

  30. Raja MAZ, Khan JA, Chaudhary NI, Shivanian E (2016) Reliable numerical treatment of nonlinear singular Flierl–Petviashivili equations for unbounded domain using ANN, GAs, and SQP. Appl Soft Comput 38:617–636

    Article  Google Scholar 

  31. Kahourzade S, Mahmoudi A, Mokhlis HB (2015) A comparative study of multi-objective optimal power flow based on particle swarm, evolutionary programming, and genetic algorithm. Electr Eng 97(1):1–12

    Article  Google Scholar 

  32. Ugalde HMR, Carmona JC, Reyes-Reyes J, Alvarado VM, Mantilla J (2015) Computational cost improvement of neural network models in black box nonlinear system identification. Neurocomputing 166:96–108

    Article  Google Scholar 

  33. Gotmare A, Patidar R, George NV (2015) Nonlinear system identification using a cuckoo search optimized adaptive Hammerstein model. Expert Syst Appl 42(5):2538–2546

    Article  Google Scholar 

  34. Ugalde HMR, Carmona JC, Reyes-Reyes J, Alvarado VM, Corbier C (2015) Balanced simplicity–accuracy neural network model families for system identification. Neural Comput Appl 26(1):171–186

    Article  Google Scholar 

  35. Raja MAZ, Samar R, Alaidarous ES, Shivanian E (2016) Bio-inspired computing platform for reliable solution of Bratu-type equations arising in the modeling of electrically conducting solids. Appl Math Model 40(11):5964–5977. doi:10.1016/j.apm.2016.01.034

    Article  MathSciNet  Google Scholar 

  36. Aledo JA, Gámez JA, Molina D (2016) Using metaheuristic algorithms for parameter estimation in generalized Mallows models. Appl Soft Comput 38:308–320

    Article  Google Scholar 

  37. Da Ros S et al (2013) A comparison among stochastic optimization algorithms for parameter estimation of biochemical kinetic models. Appl Soft Comput 13(5):2205–2214

    Article  Google Scholar 

  38. Mall S, Chakraverty S (2013) Comparison of artificial neural network architecture in solving ordinary differential equations. Adv Artif Neural Syst 2013:12

    MATH  Google Scholar 

  39. Jaddi NS, Abdullah S, Hamdan AR (2015) Optimization of neural network model using modified bat-inspired algorithm. Appl Soft Comput 37:71–86

    Article  Google Scholar 

  40. Raja MAZ, Manzar MA, Samar R (2015) An efficient computational intelligence approach for solving fractional order Riccati equations using ANN and SQP. Appl Math Model 39:3075–3093. doi:10.1016/j.apm.2014.11.024

    Article  MathSciNet  Google Scholar 

  41. Raja MAZ, Shah FH, Ahad A, Khan NA (2016) Design of bio-inspired computational intelligence technique for solving steady thin film flow of Johnson–Segalman fluid on vertical cylinder for drainage problem. J Tiawan Inst Chem Eng. doi:10.1016/j.jtice.2015.10.020

    Google Scholar 

  42. Gozde H (2015) Comparative analysis of swarm optimization-based control method for direct matrix converter. Electr Eng 97(3):181–193

    Article  Google Scholar 

  43. Raja MAZ (2014) Stochastic numerical techniques for solving Troesch’s problem. Inf Sci 279:860–873. doi:10.1016/j.ins.2014.04.036

    Article  MATH  Google Scholar 

  44. Raja MAZ, Khan JA, Behloul D, Haroon T, Siddiqui AM, Samar R (2015) Exactly satisfying initial conditions neural network models for numerical treatment of first Painlevé equation. Appl Soft Comput 26:244–256. doi:10.1016/j.asoc.2014.10.009

    Article  Google Scholar 

  45. Agrawal RK, Bawane NG (2015) Multiobjective PSO based adaption of neural network topology for pixel classification in satellite imagery. Appl Soft Comput 28:217–225

    Article  Google Scholar 

  46. Khan JA, Raja MAZ, Syam MI, Tanoli SAK, Awan SE (2015) Design and application of nature inspired computing approach for nonlinear stiff oscillatory problems. Neural Comput Appl 26(7):1763–1780

    Article  Google Scholar 

  47. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan press, Ann arbor

    Google Scholar 

  48. Zhu Z, Aslam MW, Nandi AK (2014) Genetic algorithm optimized distribution sampling test for M-QAM modulation classification. Signal Process 94:264–277

    Article  Google Scholar 

  49. Alirezazadeh P, Fathi A, Abdali-Mohammadi F (2015) A genetic algorithm-based feature selection for kinship verification. IEEE Signal Process Lett 22(12):2459–2463

    Article  Google Scholar 

  50. Yao L, Sethares WA (1994) Nonlinear parameter estimation via the genetic algorithm. IEEE Trans Signal Process 42(4):927–935

    Article  Google Scholar 

  51. Pasolli E, Melgani F (2015) Genetic algorithm-based method for mitigating label noise issue in ECG signal classification. Biomed Signal Process Control 19:130–136

    Article  Google Scholar 

  52. Arabali A et al (2013) Genetic-algorithm-based optimization approach for energy management. IEEE Trans Power Deliv 28(1):162–170

    Article  Google Scholar 

  53. Stanković L, Popović-Bugarin V, Radenović F (2013) Genetic algorithm for rigid body reconstruction after micro-Doppler removal in the radar imaging analysis. Signal Process 93(7):1921–1932

    Article  Google Scholar 

  54. Couceiro MS, Rocha RP, Fonseca Ferreira NM, Tenreiro Machado JA (2012) Introducing the fractional-order Darwinian PSO. Signal Image Video Process 6(3):343–350

    Article  Google Scholar 

  55. Couceiro M, Ghamisi P (2016) Fractional order Darwinian particle swarm optimization. Springer International Publishing, Berlin, pp 11–20

    MATH  Google Scholar 

  56. Pires EJS, Tenreiro Machado JA, de Moura Oliveira PB, Boaventura Cunha J, Mendes L (2010) Particle swarm optimization with fractional-order velocity. Nonlinear Dyn 61(1-2):295–301

    Article  MATH  Google Scholar 

  57. Couceiro MS, Martins FML, Rocha RP, Ferreira NMF, Sivasundaram S (2012) Introducing the fractional order robotic Darwinian PSO. In: AIP conference proceedings-American Institute of Physics, vol 1493, no 1, p 242

  58. Ghamisi P, Couceiro MS, Martins FML, Benediktsson JA (2014) Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization. IEEE Trans Geosci Remote Sens 52(5):2382–2394

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveed Ishtiaq Chaudhary.

Ethics declarations

Conflict of interest

All the authors of the manuscript declared that there are no potential conflicts of interest.

Human and animal rights

All the authors of the manuscript declared that there is no research involving human participants and/or animal.

Informed consent

All the authors of the manuscript declared that there is no material that required informed consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja, M.A.Z., Shah, A.A., Mehmood, A. et al. Bio-inspired computational heuristics for parameter estimation of nonlinear Hammerstein controlled autoregressive system. Neural Comput & Applic 29, 1455–1474 (2018). https://doi.org/10.1007/s00521-016-2677-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2677-x

Keywords

Navigation