Skip to main content
Log in

Stagnation point flow of nanomaterial towards nonlinear stretching surface with melting heat

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The present investigation explores the characteristics of Maxwell nanofluid over a stretched sheet possessing variable sheet thickness. The model utilized for nanofluid contains the combined impacts of thermophoresis and Brownian motion. Effects of melting heat transfer and magnetohydrodynamics are included in the analysis as well. For the formulation procedure, we have adopted the concept of usual boundary layer approximation. Convergent homotopic solutions are presented for the developed nonlinear systems. Impact of different pertinent variables on the non-dimensional equations of velocity, temperature, concentration, local Sherwood and local Nusselt numbers is analyzed and discussed in detail. It is revealed that larger Deborah and Hartman numbers retard the flow. The melting and nonlinear parameters have reverse effects for velocity and temperature. Moreover, it observed that temperature and concentration distributions augment for higher values of Brownian motion parameter; however, temperature and concentration distributions have opposite behavior for thermophoretic parameter. Besides this, in limiting sense the accuracy of outcoming results is also affirmed by comparing them with the results already available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Buongiorno J (2006) Convective transport in nanofluids. ASME J Heat Transf 128:240–250

    Article  Google Scholar 

  2. Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: The proceedings of the 1995 ASME international mechanical engineering congress and exposition, San Francisco, USA, ASME, FED 231/MD, vol 66, pp 99–105

  3. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalously thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254

    Article  Google Scholar 

  4. Nield DA, Kuznetsov AV (2009) The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. Int J Heat Mass Transf 52:5792–5795

    Article  MATH  Google Scholar 

  5. Kuznetsov AV, Nield DA (2010) Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int J Therm Sci 49:243–247

    Article  Google Scholar 

  6. Sheikholeslami M, Ellahi R (2015) Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int J Heat Mass Transf 89:799–808

    Article  Google Scholar 

  7. Ellahi R, Hassan M, Zeeshan A (2015) Shape effects of nanosize particles in Cu–H2O nanofluid on entropy generation. Int J Heat Mass Transf 81:449–456

    Article  Google Scholar 

  8. Lin Y, Zheng L, Zhang X, Ma L, Chen G (2015) MHD pseudoplastic nanofluid unsteady flow and heat transfer in a finite thin film over stretching surface with internal heat generation. Int J Heat Mass Transf 84:903–911

    Article  Google Scholar 

  9. Ellahi R, Zeeshan A, Hassan M (2016) Particle shape effects on Marangoni convection boundary layer flow of a nanofluid. Int Numer Methods Heat Fluid Flow 26:2160–2174

    Article  Google Scholar 

  10. Sheikholeslami M, Hayat T, Alsaedi A (2016) MHD free convection of Al2O3-water nanofluid considering thermal radiation: a numerical study. Int J Heat Mass Transf 96:51–59

    Article  Google Scholar 

  11. Rahman SU, Ellahi R, Nadeem S, Zia QMZ (2016) Simultaneous effects of nanoparticles and slip on Jeffrey fluid through tapered artery with mild stenosis. J Mol Liq 218:484–493

    Article  Google Scholar 

  12. Akbarzadeh M, Rashidi S, Bovand M, Ellahi R (2016) A sensitivity analysis on thermal and pumping power for the flow of nanofluid inside a wavy channel. J Mol Liq 220:1–13

    Article  Google Scholar 

  13. Sheikholeslami M, Ellahi R (2015) Electrohydrodynamic nanofluid hydrothermal treatment in an enclosure with sinusoidal upper wall. Appl Sci 5:294–306

    Article  Google Scholar 

  14. Shehzad SA, Hayat T, Alsaedi A, Obid MA (2014) Nonlinear thermal radiation in three-dimensional flow of Jeffrey nanofluid: a model for solar energy. Appl Math Comput 248:273–286

    MathSciNet  MATH  Google Scholar 

  15. Hayat T, Qayyum S, Waqas M, Alsaedi A (2016) Thermally radiative stagnation point flow of Maxwell nanofluid due to unsteady convectively heated stretched surface. J Mol Liq 224:801–810

    Article  Google Scholar 

  16. Hayat T, Waqas M, Shehzad SA, Alsaedi A (2016) A model of solar radiation and Joule heating in magnetohydrodynamic (MHD) convective flow of thixotropic nanofluid. J Mol Liq 215:704–710

    Article  Google Scholar 

  17. Uddin MJ, Bég OA, Amin N (2014) Hydromagnetic transport phenomena from a stretching or shrinking nonlinear nanomaterial sheet with Navier slip and convective heating: a model for bio-nano-materials processing. J Magn Magn Mater 368:252–261

    Article  Google Scholar 

  18. Haq RU, Nadeem S, Khan ZH, Akbar NS (2015) Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Phys E Lowdimens Syst Nanostruct 65:17–23

    Article  Google Scholar 

  19. Khan WA, Pop I (2010) Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf 53:2477–2483

    Article  MATH  Google Scholar 

  20. Hayat T, Waqas M, Shehzad SA, Alsaedi A (2016) Mixed convection flow of viscoelastic nanofluid by a cylinder with variable thermal conductivity and heat source/sink. Int J Numer Methods Heat Fluid Flow 26:214–234

    Article  MathSciNet  MATH  Google Scholar 

  21. Ramesh GK, Gireesha BJ (2014) Influence of heat source/sink on a Maxwell fluid over a stretching surface with convective boundary condition in the presence of nanoparticles. Ain Shams Eng J 5:991–998

    Article  Google Scholar 

  22. Khan M, Khan WA, Alshomrani AS (2016) Non-linear radiative flow of threedimensional Burgers nanofluid with new mass flux effect. Int J Heat Mass Transf 101:570–576

    Article  Google Scholar 

  23. Mahanthesh B, Gireesha BJ, Gorla RSR, Abbasi FM, Shehzad SA (2016) Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary. J Magn Magn Mater 417:189–196

    Article  Google Scholar 

  24. Hayat T, Waqas M, Khan MI, Alsaedi A (2016) Analysis of thixotropic nanomaterial in a doubly stratified medium considering magnetic field effects. Int J Heat Mass Transf 102:1123–1129

    Article  Google Scholar 

  25. Hayat T, Waqas M, Shehzad SA, Alsaedi A (2016) On model of Burgers fluid subject to magneto nanoparticles and convective conditions. J Mol Liq 222:181–187

    Article  Google Scholar 

  26. Farooq M, Khan MI, Waqas M, Hayat T, Alsaedi A, Khan MI (2016) MHD stagnation point flow of viscoelastic nanofluid with non-linear radiation effects. J Mol Liq 221:1097–1103

    Article  Google Scholar 

  27. Wang S, Tan WC (2011) Stability analysis of soret-driven double-diffusive convection of Maxwell fluid in a porous medium. Int J Heat Fluid Flow 32:88–94

    Article  Google Scholar 

  28. Jamil M, Fetecau C (2010) Helical flows of Maxwell fluid between coaxial cylinders with given shear stresses on the boundary. Nonlinear Anal Real World Appl 5:4302–4311

    Article  MathSciNet  MATH  Google Scholar 

  29. Zierep J, Fetecau C (2007) Energetic balance for the Rayleigh–Stokes problem of a Maxwell fluid. Int J Eng Sci 45:617–627

    Article  MathSciNet  MATH  Google Scholar 

  30. Hayat T, Waqas M, Shehzad SA, Alsaedi A (2014) Effects of Joule heating and thermophoresis on stretched flow with convective boundary conditions. Sci Iran B 21:682–692

    Google Scholar 

  31. Shehzad SA, Alsaedi A, Hayat T (2013) Hydromagnetic steady flow of Maxwell fluid over a bidirectional stretching surface with prescribed surface temperature and prescribed surface heat flux. PLoS ONE 8:e68139

    Article  Google Scholar 

  32. Fang T, Zhang J, Zhong Y (2012) Boundary layer flow over a stretching sheet with variable thickness. Appl Math Comput 218:7214–7252

    MathSciNet  MATH  Google Scholar 

  33. Khader MM, Megahed AM (2013) Numerical solution for boundary layer flow due to a nonlinearly stretching sheet with variable thickness and slip velocity. Eur Phys J Plus 100:128

    Google Scholar 

  34. Wahed MSA, Elbashbeshy EMA, Emam TG (2015) Flow and heat transfer over a moving surface with nonlinear velocity and variable thickness in a nanofluids in the presence of Brownian motion. Appl Math Comput 254:49–62

    MathSciNet  Google Scholar 

  35. Hayat T, Farooq M, Alsaedi A, Al-Sulami F (2015) Impact of Cattaneo–Christov heat flux in the flow over a stretching sheet with variable thickness. AIP Adv 5:087159

    Article  Google Scholar 

  36. Epstein M, Cho DH (1976) Melting heat transfer in steady laminar flow over a flat plate. J Heat Transf 98:531–533

    Article  Google Scholar 

  37. Cheng WT, Lin CH (2007) Melting effect on mixed convective heat transfer with aiding and opposing external flows from the vertical plate in a liquid-saturated porous medium. Int J Heat Mass Transf 50:3026–3034

    Article  MATH  Google Scholar 

  38. Hayat T, Bashir G, Waqas M, Alsaedi A (2016) MHD 2D flow of Williamson nanofluid over a nonlinear variable thicked surface with melting heat transfer. J Mol Liq 223:836–844

    Article  Google Scholar 

  39. Awais M, Hayat T, Alsaedi A (2015) Investigation of heat transfer in flow of Burgers fluid during a melting process. J Egypt Math Soc 23:410–415

    Article  MathSciNet  MATH  Google Scholar 

  40. Hayat T, Farooq M, Alsaedi A, Iqbal Z (2013) Melting heat transfer in the stagnation point flow of Powell–Eyring fluid. J Thermophys Heat Transf 27:761–766

    Article  Google Scholar 

  41. Hayat T, Farooq M, Alsaedi A (2014) Melting heat transfer in the stagnation-point flow of Maxwell fluid with double-diffusive convection. Int J Numer Method Heat Fluid Flow 24:760–774

    Article  MathSciNet  MATH  Google Scholar 

  42. Das K, Acharya N, Kundu PK (2015) Radiative flow of MHD Jeffrey fluid past a stretching sheet with surface slip and melting heat transfer. Alex Eng J 54:815–821

    Article  Google Scholar 

  43. Liao SJ (2012) Homotopic analysis method in nonlinear differential equations. Springer, Heidelberg

    Book  Google Scholar 

  44. Khan M, Khan WA (2014) Steady flow of Burgers’ nanofluid over a stretching surface with heat generation/absorption. J Braz Soc Mech Sci Eng. doi:10.1007/s40430-014-0290-4

    Google Scholar 

  45. Hayat T, Khan MI, Farooq M, Gull N, Alsaedi A (2016) Unsteady three-dimensional mixed convection flow with variable viscosity and thermal conductivity. J Mol Liq 223:1297–1310

    Article  Google Scholar 

  46. Hayat T, Khan MI, Farooq M, Yasmeen T, Alsaedi A (2016) Stagnation point flow with Cattaneo–Christov heat flux and homogeneous-heterogeneous reactions. J Mol Liq 220:49–55

    Article  Google Scholar 

  47. Turkyilmazoglu M (2016) An Effective approach for evaluation of the optimal convergence control parameter in the homotopy analysis method. Filomat 30:1633–1650

    Article  MathSciNet  MATH  Google Scholar 

  48. Hayat T, Hussain Z, Farooq M, Alsaedi A (2016) Effects of homogeneous and heterogeneous reactions and melting heat in the viscoelastic fluid flow. J Mol Liq 215:749–755

    Article  Google Scholar 

  49. Waqas M, Hayat T, Farooq M, Shehzad SA, Alsaedi A (2016) Cattaneo–Christov heat flux model for flow of variable thermal conductivity generalized Burgers fluid. J Mol Liq 220:642–648

    Article  Google Scholar 

  50. Hayat T, Ullah I, Muhammad T, Alsaedi A (2016) Magnetohydrodynamic (MHD) three-dimensional flow of second grade nanofluid by a convectively heated exponentially stretching surface. J Mol Liq 220:1004–1012

    Article  Google Scholar 

  51. Waqas M, Farooq M, Khan MI, Alsaedi A, Hayat T, Yasmeen T (2016) Magnetohydrodynamic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition. Int J Heat Mass Transf 102:766–772

    Article  Google Scholar 

  52. Ellahi R, Hassan M, Zeeshan A (2016) Aggregation effects on water base Al2O3-nanofluid over permeable wedge in mixed convection. Asia-Pac J Chem Eng 11:179–186

    Article  Google Scholar 

  53. Hayat T, Khan MI, Imtiaz M, Alseadi A, Waqas M (2016) Similarity transformation approach for ferromagnetic mixed convection flow in the presence of chemically reactive magnetic dipole. AIP Phy Fluids 28:102003

    Article  Google Scholar 

  54. Alseadi A, Khan MI, Farooq M, Gull N, Hayat T (2016) Magnetohydrodynamic (MHD) stratified bioconvective flow of nanofluid due to gyrotactic microorganisms. Adv Powder Technol. doi:10.1016/j.apt.2016.10.002

    Google Scholar 

  55. Hayat T, Khan MI, Farooq M, Alsaedi A, Waqas M, Yasmeen T (2016) Impact of Cattaneo–Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. Int J Heat Mass Transf 99:702–710

    Article  Google Scholar 

  56. Nadeem S, Muhammad N (2016) Impact of stratification and Cattaneo–Christov heat flux in the flow saturated with porous medium. J Mol Liq 224:423–430

    Article  Google Scholar 

  57. Khan WA, Khan M (2016) Impact of thermophoresis particle deposition on three-dimensional radiative flow of Burgers fluid. Res Phys. doi:10.1016/j.rinp.2016.10.014

    Google Scholar 

  58. Hayat T, Bashir G, Waqas M, Alsaedi A (2016) MHD flow of Jeffrey liquid due to a nonlinear radially stretched sheet in presence of Newtonian heating. Res Phys. doi:10.1016/j.rinp.2016.10.001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Waqas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Bashir, G., Waqas, M. et al. Stagnation point flow of nanomaterial towards nonlinear stretching surface with melting heat. Neural Comput & Applic 30, 509–518 (2018). https://doi.org/10.1007/s00521-016-2704-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2704-y

Keywords

Navigation