Skip to main content
Log in

Magnetohydrodynamic three-dimensional flow of nanofluids with slip and thermal radiation over a nonlinear stretching sheet: a numerical study

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

A numerical simulation for mixed convective three-dimensional slip flow of water-based nanofluids with temperature jump boundary condition is presented. The flow is caused by nonlinear stretching surface. Conservation of energy equation involves the radiation heat flux term. Applied transverse magnetic effect of variable kind is also incorporated. Suitable nonlinear similarity transformations are used to reduce the governing equations into a set of self-similar equations. The subsequent equations are solved numerically by using shooting method. The solutions for the velocity and temperature distributions are computed for several values of flow pertinent parameters. Further, the numerical values for skin-friction coefficients and Nusselt number in respect of different nanoparticles are tabulated. A comparison between our numerical and already existing results has also been made. It is found that the velocity and thermal slip boundary condition showed a significant effect on momentum and thermal boundary layer thickness at the wall. The presence of nanoparticles stabilizes the thermal boundary layer growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

\(a,b\) :

Constants

\(A\) :

Velocity slip parameter

\(B^{*}\) :

Magnetic field

\(B\) :

Thermal slip parameter

\(B_{0}\) :

Constant

\(c\) :

Stretching ratio parameter

\(C_{{f_{x} }}\) :

Skin-friction coefficient along \(x\)-direction

\(C_{{f_{y} }}\) :

Skin-friction coefficient along \(y\)-direction

\(C_{p}\) :

Specific heat coefficient \(({\text{J/kg}}\;{\text{K}})\)

\(f,g\) :

Dimensionless velocities

\(g^{*}\) :

Acceleration due to gravity

\(Gr_{x}\) :

Local Grashof number

\(k\) :

Thermal conductivity \(({\text{W/mK}})\)

k 1 :

Mean absorption coefficient (m−1)

K :

Constant

\(K^{*}\) :

Thermal slip factor

M 2 :

Magnetic parameter

m :

Constant

\(Nu\) :

Local Nusselt number

\(n\) :

Power-law index

\(Pr\) :

Prandtl number

\(q_{w}\) :

Heat flux at the sheet

\(q_{r}\) :

Radiative heat flux

\(R\) :

Thermal radiation parameter

\(Re_{x} , Re_{y}\) :

Local Reynolds numbers

\(T\) :

Fluid temperature (K)

\(T_{w}\) :

Temperature at the surface (K)

\(T_{\infty }\) :

Ambient surface temperature (K)

\(u, v,w\) :

Velocity components along \(x\), \(y\) and \(z\)-directions

\(u_{w} , v_{w}\) :

Stretching velocities

\(x, y, z\) :

Coordinates (m)

\(\theta\) :

Dimensionless temperature

\(\phi\) :

Nanoparticle volume fraction

\(\rho\) :

Density

\(\alpha_{\text{nf}}\) :

Thermal diffusivity of the nanofluid

\(\mu\) :

Dynamic viscosity (kg m−1 s−1)

\(\sigma\) :

Electrical conductivity

\(\sigma^{*}\) :

Stefan–Boltzmann constant (W m−2 K−4)

\(\beta_{\text{T}}\) :

Thermal volumetric coefficient

\(\lambda\) :

Mixed convection parameter

\(\lambda_{0}^{*}\) :

Velocity slip factor

\(\lambda_{0}\) :

Constant

\(\eta\) :

Similarity variable

\(\tau_{zx}\) :

Surface shear stress in \(x\)-direction

\(\tau_{zy}\) :

Surface shear stress in \(y\)-direction

\(\nu\) :

Kinematic viscosity

\(\sigma_{v}\) :

Tangential momentum accommodation coefficient

\('\) :

Derivative with respect to \(\eta\)

\(f\) :

Fluid

\({\text{nf}}\) :

Nanofluid

s :

Nanoparticles

References

  1. Mohammadein AA, Gorla RSR (1994) Mixed convection boundary layer flow of micropolar fluid on a horizontal plate with vectored mass transfer. Wfirmestof-ffibertragung 29:235–241

    Google Scholar 

  2. Ishak A, Nazar R, Pop I (2006) Mixed convection boundary layers in the stagnation point flow toward a stretching vertical sheet. Meccanica 41:509–518

    Article  MATH  Google Scholar 

  3. Makinde OD, Olanrewaju PO (2011) Unsteady mixed convection with Soret and Dufour effects past a porous plate moving through a binary mixture of chemically reacting fluid. Chem Eng Commun 198:920–938

    Article  Google Scholar 

  4. Makinde OD, Aziz A (2010) MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition. Int J Therm Sci 49:1813–1820

    Article  Google Scholar 

  5. Hayat T, Shehzad SA, Ashraf MB, Alsaedi A (2013) Magnetohydrodynamic mixed convection flow of thixotropic fluid with thermophoresis and Joule heating. J Therm Phys Heat Transf 27:733–740

    Article  Google Scholar 

  6. Gireesha BJ, Mahanthesh B, Gorla RSR, Krupalakshmi KL (2016) Mixed convection two-phase flow of Maxwell fluid under the influence of non-linear thermal radiation, non-uniform heat source/sink and fluid-particle suspension. Ain Shams Eng J. doi:10.1016/j.asej.2016.04.020

  7. Wang CY (1984) The three-dimensional flow due to a stretching flat surface. Phys Fluids 27(8):1915–1917

    Article  MathSciNet  MATH  Google Scholar 

  8. Hayat T, Sajid M, Pop I (2008) Three-dimensional flow over a stretching surface in a viscoelastic fluid. Nonlinear Anal Real World Appl 9(4):1811–1822

    Article  MathSciNet  MATH  Google Scholar 

  9. Gorla RSR, Pop I, Dakappagiri V (1995) Three-dimensional flow of a power-law fluid due to a stretching flat surface. ZAMM Z Angew Math Mech 75:389–394

    Article  MATH  Google Scholar 

  10. Ahmad K, Nazar R (2011) Magnetohydrodynamic three-dimensional flow and heat transfer over a stretching surface in a viscoelastic fluid. J Sci Technol 3(1):33–46

    Google Scholar 

  11. Xu H, Liao S, Pop I (2008) Series solutions of unsteady free convection flow in the stagnation-point region of a three dimensional body. Int J Therm Sci 47:600–608

    Article  Google Scholar 

  12. Singh AK, Singh NP, Gupta M, Agnihotri P (2010) Unsteady free convection and mass transfer flow in the stagnation-point region of a three-dimensional body: use of homotopy analysis method. Comput Therm Sci 2:501–514

    Article  Google Scholar 

  13. Ramzan M, Farooq M, Alsaedi A, Hayat T (2013) MHD three-dimensional flow of couple stress fluid with Newtonian heating. Eur Phys J Plus 128:49. doi:10.1140/epjp/i2013-13049-5

    Article  Google Scholar 

  14. Choi SUS (1995) Enhancing thermal conductivity of fluid with nanoparticles, developments and applications of non-Newtonian flow. ASME FED 231:99–105

    Google Scholar 

  15. Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle fluid mixture. J Thermophys Heat Transf 13:474–480

    Article  Google Scholar 

  16. Eastman JA, Choi SUS, Li S, Yu X, Thompson LJ (2001) Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720

    Article  Google Scholar 

  17. Buongiorno J (2006) Convective transport in nanofluids. ASME J Heat Transf 128:240–250

    Article  Google Scholar 

  18. Gireesh BJ, Mahanthesh B, Gorla RSR (2014) Suspended particle effect on nanofluid boundary layer flow past a stretching surface. J Nanofluids 3(3):267–277

    Article  Google Scholar 

  19. Sheikholeslami M, Ganji DD (2013) Heat transfer of Cu-water nanofluid flow between parallel plates. Powder Technol 235:873–879

    Article  Google Scholar 

  20. Sheikholeslami M, Ganji DD, Ashorynejad HR (2013) Investigation of squeezing unsteady nanofluid flow using ADM. Powder Technol 239:259–265

    Article  Google Scholar 

  21. Mahanthesh B, Gorla RSR, Gireesha BJ (2016) Mixed convection squeezing three-dimensional flow in a rotating channel filled with nanofluid. Int J Numer Methods Heat Fluid Flow 26(5):1460–1485

    Article  MathSciNet  MATH  Google Scholar 

  22. Shehzad SA, Abbasi FM, Hayat T, Alsaadi F (2014) MHD mixed convective peristaltic motion of nanofluid with Joule heating and thermophoresis effects. PLoS ONE 9(11):e111417

    Article  Google Scholar 

  23. Shehzad SA, Abbasi FM, Hayat T, Alsaadi F (2015) Model and comparative study for peristaltic transport of water based nanofluids. J Mol Liq 209:723–728

    Article  Google Scholar 

  24. Mahanthesh B, Gireesha BJ, Gorla RSR, Abbasi FM, Shehzad SA (2016) Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary. J Magn Magn Mater 417:189–196

    Article  Google Scholar 

  25. Raju CSK, Sandeep N, Babu MJ, Sugunamma V (2016) Dual solutions for three-dimensional MHD flow of a nanofluid over a nonlinearly permeable stretching sheet. Alex Eng J 55(1):151–162

    Article  Google Scholar 

  26. Xu H, Fan T, You XC (2012) Three-dimensional boundary-layer flow and heat transfer of a Cu-water nanofluid over a stretching surface. Int Conf Numer Anal Appl Math Kos Greece AIP Conf Proc 1479:1845–1849

    Google Scholar 

  27. Khan JA, Mustafa M, Hayat T, Farooq MA, Alsaedi A, Liao SJ (2014) On model for three-dimensional flow of nanofluid: an application to solar energy. J Mol Liq 194:41–47

    Article  Google Scholar 

  28. Hayat T, Muhammad T, Shehzad SA, Alsaedi A (2015) Similarity solution to three dimensional boundary layer flow of second grade nanofluid past a stretching surface with thermal radiation and heat source/sink. AIP Adv 5:017107. doi:10.1063/1.4905780

    Article  Google Scholar 

  29. Hayat T, Muhammad T, Alsaedi A, Alhuthali MS (2015) Magnetohydrodynamic three-dimensional flow of viscoelastic nanofluid in the presence of nonlinear thermal radiation. J Magn Magn Mater 385:222–229

    Article  Google Scholar 

  30. Gireesha BJ, Gorla RSR, Mahanthesh B (2015) Effect of suspended nanoparticles on three-dimensional MHD flow, heat and mass transfer of radiating Eyring-Powell fluid over a stretching sheet. J Nanofluids 4:1–11

    Article  Google Scholar 

  31. Bachok N, Ishak A, Nazar R, Pop I (2010) Flow and heat transfer at a general three-dimensional stagnation point in a nanofluid. Phys B 405:4914–4918

    Article  Google Scholar 

  32. Zhao Q, Xu H, Fan T (2015) Analysis of three-dimensional boundary-layer nanofluid flow and heat transfer over a stretching surface by means of the homotopy analysis method. Bound Value Probl. doi:10.1186/s13661-015-0327-3

    MathSciNet  MATH  Google Scholar 

  33. Khan JA, Mustafa M, Hayat T, Alsaedi A (2014) On three-dimensional flow and heat transfer over a non-linearly stretching sheet: analytical and numerical solutions. PLoS ONE 9(9):e107287. doi:10.1371/journal.pone.0107287

    Article  Google Scholar 

  34. Khan JA, Mustafa M, Hayat T, Alsaedi A (2015) Three-dimensional flow of nanofluid over a non-linearly stretching sheet: an application to solar energy. Int J Heat Mass Transf 86:158–164

    Article  Google Scholar 

  35. Das K (2012) Slip flow and convective heat transfer of nanofluids over a permeable stretching surface. Comput Fluids 64:34–42

    Article  MathSciNet  MATH  Google Scholar 

  36. Uddin MJ, Ferdows M, Anwar Beg O (2013) Group analysis and numerical computation of magneto-convective non-Newtonian nanofluid slip flow from a permeable stretching sheet. Appl Nanosci 4:897–910

    Article  Google Scholar 

  37. Zheng L, Zhanga C, Zhang X, Zhang J (2013) Flow and radiation heat transfer of a nanofluid over a stretching sheet with velocity slip and temperature jump in porous medium. J Frankl Inst 350:990–1007

    Article  MathSciNet  MATH  Google Scholar 

  38. Hayat T, Abbasi FM, Al-Yami M, Monaquel S (2014) Slip and Joule heating effects in mixed convection peristaltic transport of nanofluid with Soret and Dufour effects. J Mol Liq 194:93–99

    Article  Google Scholar 

  39. Ibrahim W, Shanker B (2013) MHD boundary layer flow and heat transfer of a nanofluid past a permeable stretching sheet with velocity, thermal and solutal slip boundary conditions. Comput Fluids 75:1–10

    Article  MathSciNet  MATH  Google Scholar 

  40. Hayat T, Imtiaz M, Alsaedi A, Kutbi MA (2015) MHD three-dimensional flow of nanofluid with velocity slip and nonlinear thermal radiation. J Magn Magn Mater 396:31–37

    Article  Google Scholar 

  41. Das S, Jana RN (2015) Natural convective magneto-nanofluid flow and radiative heat transfer past a moving vertical plate. Alex Eng J 54:55–64

    Article  Google Scholar 

  42. Maiga SEB, Palm SJ, Nguyen CT, Roy G, Galanis N (2005) Heat transfer enhancement by using nanofluids in forced convection flows. Int J Heat Fluid Flow 26(4):530–546

    Article  Google Scholar 

  43. Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571–581

    Article  Google Scholar 

  44. Meade DB, Haran BS, White RE (1996) The shooting technique for the solution of two-point boundary value problems. Maple Technol 3:85–93

    Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere thanks to anonymous Editors and Reviewers for their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Gireesha.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahanthesh, B., Gireesha, B.J., Gorla, R.S.R. et al. Magnetohydrodynamic three-dimensional flow of nanofluids with slip and thermal radiation over a nonlinear stretching sheet: a numerical study. Neural Comput & Applic 30, 1557–1567 (2018). https://doi.org/10.1007/s00521-016-2742-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2742-5

Keywords