Skip to main content

Advertisement

Log in

A novel Parkinson’s Disease Diagnosis Index using higher-order spectra features in EEG signals

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Higher-order spectra (HOS) is an efficient feature extraction method used in various biomedical applications such as stages of sleep, epilepsy detection, cardiac abnormalities, and affective computing. The motive of this work was to explore the application of HOS for an automated diagnosis of Parkinson’s disease (PD) using electroencephalography (EEG) signals. Resting-state EEG signals collected from 20 PD patients with medication and 20 age-matched normal subjects were used in this study. HOS bispectrum features were extracted from the EEG signals. The obtained features were ranked using t value, and highly ranked features were used in order to develop the PD Diagnosis Index (PDDI). The PDDI is a single value, which can discriminate the two classes. Also, the ranked features were fed one by one to the various classifiers, namely decision tree (DT), fuzzy K-nearest neighbor (FKNN), K-nearest neighbor (KNN), naive bayes (NB), probabilistic neural network (PNN), and support vector machine (SVM), to choose the best classifier using minimum number of features. We have obtained an optimum mean classification accuracy of 99.62%, mean sensitivity and specificity of 100.00 and 99.25%, respectively, using the SVM classifier. The proposed PDDI can aid the clinicians in their diagnosis and help to test the efficacy of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Han CX, Wang J, Yi GS, Che YQ (2013) Investigation of EEG abnormalities in the early stage of Parkinson’s disease. Cogn Neurodyn 7:351–359

    Article  Google Scholar 

  2. Valls-Sole J, Valldeoriola F (2002) Neurophysiological correlate of clinical signs in Parkinson’s disease. Clin Neurophysiol 113(6):792–805

    Article  Google Scholar 

  3. Hossen A, Muthuraman M, Raethjen J, Deuschl G, Heute U (2010) Discrimination of Parkinsonian tremor from essential tremor by implementation of a wavelet-based soft-decision technique on EMG and accelerometer signals. Biomed Signal Process Control 5:181–188

    Article  Google Scholar 

  4. Ma C, Ouyang J, Chen HL, Zhao XH (2014) An efficient diagnosis system for Parkinson’s disease using kernel-based extreme learning machine with subtractive clustering features weighting approach. Comput Math Methods Med 2014:1–14. doi:10.1155/2014/985789

    Google Scholar 

  5. Daliri MR (2013) Chi square distance kernel of the gaits for the diagnosis of Parkinson’s disease. Biomed Signal Process Control 8(1):66–70

    Article  Google Scholar 

  6. Chen HL, Huang CC, Yub XG, Xu X, Sun X, Wang G, Wang SJ (2013) An efficient diagnosis system for detection of Parkinson’s disease using fuzzy k-nearest neighbor approach. Expert Syst with Appl 40(1):263–271

    Article  Google Scholar 

  7. Zuo WL, Wang ZY, Liu T, Chen HL (2013) Effective detection of Parkinson’s disease using an adaptive fuzzy K-nearest neighbor approach. Biomed Signal Process Control 8(4):364–373

    Article  Google Scholar 

  8. Neufeld MY, Inzelberg R, Korczyn AD (1988) EEG in demented and non-demented parkinsonian patients. Acta Neurol Scand 78(1):1–5

    Article  Google Scholar 

  9. Neufeld MY, Blumen S, Aitkin I, Paramet Y, Korczyn AD (1994) EEG frequency analysis in demented and non-demented parkinsonian patients. Dementia (Basel, Switzerland) 5(1):23–28

    Google Scholar 

  10. Pezard L, Jech R, Ruzicka E (2001) Investigation of non-linear properties of multichannel EEG in the early stages of Parkinson’s disease. Clin Neurophysiol 112:38–45

    Article  Google Scholar 

  11. Soikkeli R, Partanen J, Soininen H, Pääkkönen A, Riekkinen PS (1991) Slowing of EEG in Parkinson’s disease. Electroencephalogr Clin Neurophysiol 79(3):159–165

    Article  Google Scholar 

  12. Tanaka H, Koenig T, Pascual-Marqui RD, Hirata K, Kochi K, Lehmann D (2000) Event-related potential and EEG measures in Parkinson’s disease without and with dementia. Dement Geriatr Cogn Disord 11(1):39–45

    Article  Google Scholar 

  13. Muller V, Lutzenberger W, Pulvermüller F, Mohr B, Birbaumer N (2001) Investigation of brain dynamics in Parkinson’s disease by methods derived from nonlinear dynamics. Exp Brain Res 137(1):103–110

    Article  Google Scholar 

  14. Lima CAM, Coelho ALV, Chagas S (2009) Automatic EEG signal classification for epilepsy diagnosis with Relevance Vector Machines. Expert Syst Appl 36(6):10054–10059

    Article  Google Scholar 

  15. Leuchter AF, Cook IA, Gilmer WS, Marangell LB, Burgoyne KS, Howland RH, Trivedi MH, Zisook S, Jain R, Fava M, Iosifescu D, Greenwald S (2009) Effectiveness of a quantitative electroencephalographic biomarker for predicting differential response or remission with escitalopram and bupropion in major depressive disorder. Psychiatry Res 169(2):132–138

    Article  Google Scholar 

  16. Gandal MJ, Edgar JC, Klook K, Siegel SJ (2012) Gamma synchrony: towards a translational biomarker for the treatment-resistant symptoms of schizophrenia. Neuropharmacology 62(3):1504–1518

    Article  Google Scholar 

  17. Hampel H, Frank R, Broich K, Teipel SJ, Katz RG, Hardy J, Herholz K, Bokde AL, Jessen F, Hoessler YC, Sanhai WR, Zetterberg H, Woodcock J, Blennow K (2010) Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov 9(7):560–574

    Article  Google Scholar 

  18. Al-Hazimi A, Al-Ama N, Syiamic A, Qosti R, Abdel-Galil K (2002) Time-domain analysis of heart rate variability in diabetic patients with and without autonomic neuropathy. Ann Saudi Med 22(5–6):400–403

    Article  Google Scholar 

  19. Stam CJ (2005) Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol 116:2266–2301

    Article  Google Scholar 

  20. Chua KC, Chandran V, Acharya UR, Lim CM (2009) Analysis of epileptic EEG signals using higher order spectra. J Med Eng Technol 33(1):42–50

    Article  Google Scholar 

  21. Acharya UR, Chua EC, Chua KC, Min LC, Tamura T (2010) Analysis and automatic identification of sleep stages using higher order spectra. J Neural Syst 20(6):509–521

    Article  Google Scholar 

  22. Martis RJ, Acharya UR, Mandana KM, Ray AK, Chakraborty C (2013) Cardiac decision making using higher order spectra. Biomed Signal Process Control 8:193–203

    Article  Google Scholar 

  23. Yuvaraj R, Murugappan M, Norlinah MI, Sundaraj K, Omar MI, Khairiyah M, Palaniappan R (2014) Optimal set of EEG features for emotional state classification and trajectory visualization in Parkinson’s disease. Int J Psychophysiol 94(3):482–495

    Article  Google Scholar 

  24. Aydin S, Arica N, Ergul E, Tan O (2014) Classification of obsessive compulsive disorder by EEG complexity and hemispheric dependency measurements. Int J Neural Syst 25(3):1–16

    Google Scholar 

  25. Chua KC, Chandran V, Acharya UR, Lim CM (2010) Application of higher order statistics/spectra in biomedical signals–a review. J Med Eng Phy 32:679–689

    Article  Google Scholar 

  26. Zhou SM, Gan JQ, Sepulveda F (2008) Classifying mental tasks based on features of higher order statistics from EEG signals in brain computer interface. Info Sci 178:1629–1640

    Article  Google Scholar 

  27. Du X, Dua S, Acharya RU, Chua CK (2012) Classification of epilepsy using high-order spectra features and principal component analysis. J Med Syst 36(3):1731–1743

    Article  Google Scholar 

  28. Zhang JW, Zheng CX, Xie A (2000) Bispectrum analysis of focal ischemic cerebral EEG signal using third-order recursion method. IEEE Trans Biomed Eng 47(3):352–359

    Article  Google Scholar 

  29. Kobayashi H, Mark BL, Turin W (2011) Probability, random processes and statistical analysis: applications to communications, signal processing queuing theory and mathematical finance. Cambridge University Press, Cambridge

    Book  Google Scholar 

  30. Acharya UR, Fujita H, Sudarshan VK, Bhat S, Koh JEW (2015) Application of entropies for automated diagnosis of epilepsy using EEG signals: a review. Knowledge-Based Syst 88:85–96

    Article  Google Scholar 

  31. Ghista DN (2004) Physiological systems numbers in medical diagnosis and hospital cost effective operation. J Mech Med Biol 4:401–418

    Article  Google Scholar 

  32. Ghista DN (2009) Non-dimensional physiological indices for medical assessment. J Mech Med Biol 9:643–669

    Article  Google Scholar 

  33. Acharya UR, Sudarshan VK, Adeli H, Santhosh J, Koh JE, Puthankatti SD, Adeli A (2015) A novel depression diagnosis index using nonlinear features in EEG signals. Eur Neurol 74(1–4):79–83

    Article  Google Scholar 

  34. Sharma R, Pachori RB, Acharya UR (2015) An integrated index for the identification of focal electroencephalogram signals using discrete wavelet transform and entropy measures. Entropy 17(8):5218–5240

    Article  Google Scholar 

  35. Acharya UR, Fujita H, Vidya KS, Vinitha S, Lim WJE, Ghista DN, Tan RS (2015) An integrated index for detection of sudden cardiac death using discrete wavelet transform and nonlinear features. Knowledge-Based Syst 83:149–158

    Article  Google Scholar 

  36. Acharya UR, Faust O, Alvin APC, Sree SV, Molinari F, Saba L, Nicolaides A, Suri JS (2012) Symptomatic vs. asymptomatic plaque classification in carotid ultrasound. J Med Syst 36(3):1861–1871

    Article  Google Scholar 

  37. Acharya UR, Faust O, Sree SV, Molinari F, Garberoglio R, Suri JS (2011) Cost-effective and non-invasive automated benign and malignant thyroid lesion classification in 3D contrast-enhanced ultrasound using combination of wavelets and textures: a class of Thyro Scan TM algorithms. Tech Cancer Res Treat 10(4):371–380

    Article  Google Scholar 

  38. Acharya UR, Vidya KS, Ghista DN, Lim WJE, Molinari F, Meena S (2015) Computer aided diagnosis of diabetic subjects by heart rate variability signals using discrete wavelet transform method. Knowledge-Based Syst 81:56–64

    Article  Google Scholar 

  39. Mookiah MRK, Acharya UR, Lim CM, Petznick A, Suri JS (2012) Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features. Knowledge-Based Syst 33:73–82

    Article  Google Scholar 

  40. Larose DT (2004) Discovering knowledge in data: an introduction to data mining. Willey Interscience, New Jersey, pp 90–106 (Chapter 5)

    Book  Google Scholar 

  41. Jerritta S, Murugappan M, Wan K, Yaacob S (2013) Classification of emotional states from electrocardiogram signals: a non-linear approach based on hurst. Biomed Eng Online 12(1):44–62

    Article  Google Scholar 

  42. Han J, Kamber M (2006) Data mining: concepts and techniques, 2nd edn. Morgan Kaufmann, Burlington

    MATH  Google Scholar 

  43. Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10(5):988–999

    Article  Google Scholar 

  44. Cooper JA, Sagar HJ, Jordan N, Harvey NS, Sullivan EV (1991) Cognitive impairment in early, untreated Parkinson’s disease and its relationship to motor disability. Brain 114(Pt 5):2095–2122

    Article  Google Scholar 

  45. Little MA, McSharry PE, Hunter EJ, Spielman J, Ramig LO (2009) Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. IEEE Trans Biomed Eng 56(4):1015–1022

    Article  Google Scholar 

  46. Shahbaba B, Neal R (2009) Nonlinear models using Dirichlet process mixtures. J Machine Learning Res 10:1829–1850

    MathSciNet  MATH  Google Scholar 

  47. Das R (2010) A comparison of multiple classification methods for diagnosis of Parkinson disease. Expert Syst Appl 37(2):1568–1572

    Article  Google Scholar 

  48. Sakar CO, Kursun O (2010) Telediagnosis of Parkinson’s disease using measurements of dysphonia. J Med Syst 34(4):591–599

    Article  Google Scholar 

  49. Psorakis I, Damoulas T, Girolami MA (2010) Multiclass relevance vector machines: sparsity and accuracy. IEEE Trans Neural Netw 21(10):1588–1598

    Article  Google Scholar 

  50. Guo PF, Bhattacharya P, Kharma N (2010) Advances in detecting Parkinson’s disease. In: Medical biometrics, Lecture Notes in Computer Science, Berlin, Germany 6165:306–314

  51. Ozcift A, Gulten A (2011) Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms. Comput Methods Progr Biomed 104(3):443–451

    Article  Google Scholar 

  52. Li DC, Liu CW, Hu SC (2011) A fuzzy-based data transformation for feature extraction to increase classification performance with small medical data sets. Artif Intell Med 52(1):45–52

    Article  Google Scholar 

  53. Luukka P (2011) Feature selection using fuzzy entropy measures with similarity classifier. Expert Syst Appl 38(4):4600–4607

    Article  Google Scholar 

  54. Spadoto AA, Guido RC, Carnevali FL, Pagnin AF, Falcao AX, Papa JP (2011) Improving Parkinson’s disease identification through evolutionary-based feature selection. In: Proceedings of the annual international conference of the ieee engineering in medicine and biology society (EMBC-11), Boston, Mass, USA, pp. 7857–7860

  55. Astrom F, Koker R (2011) A parallel neural network approach to prediction of Parkinson’s Disease. Expert Syst Appl 38(10):12470–12474

    Article  Google Scholar 

  56. Ozcift A (2012) SVM feature selection based rotation forest ensemble classifiers to improve computer-aided diagnosis of Parkinson disease. J Med Syst 36:2141–2147

    Article  Google Scholar 

  57. Polat K (2012) Classification of Parkinson’s disease using feature weighting method on the basis of fuzzy C-means clustering. Int J Syst Sci 43(4):597–609

    Article  MathSciNet  MATH  Google Scholar 

  58. Tsanas A, Little MA, McSharry PE, Spielman J, Ramig LO (2012) Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease. IEEE Trans Biomed Eng 59(5):1264–1271

    Article  Google Scholar 

  59. Chen HL, Huang CC, Yu XG, Xuc X, Sund X, Wang G, Wang SJ (2013) An efficient diagnosis system for detection of Parkinson’s disease using fuzzy k-nearest neighbor approach. Expert Syst Appl 40(1):263–271

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the individuals who supported and participated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajamanickam Yuvaraj.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuvaraj, R., Rajendra Acharya, U. & Hagiwara, Y. A novel Parkinson’s Disease Diagnosis Index using higher-order spectra features in EEG signals. Neural Comput & Applic 30, 1225–1235 (2018). https://doi.org/10.1007/s00521-016-2756-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2756-z

Keywords

Navigation