Skip to main content

Advertisement

Log in

A novel hybrid method based on fuzzy cognitive maps and fuzzy clustering algorithms for grading celiac disease

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper presents a new method based on fuzzy cognitive map (FCM) and possibilistic fuzzy c-means (PFCM) clustering algorithm for categorizing celiac disease (CD). CD is a complex disorder whose development is affected by genetics (HLA alleles) and gluten ingestion. The celiac patients who are not treated are at a high risk of cancer, malignant lymphoma, and small bowel neoplasia. Therefore, CD diagnosis and grading are of paramount importance. The proposed FCM models human thinking for the purpose of classifying patients suffering from CD. We used the latest grading method where three grades A, B1, and B2 are used. To improve FCM efficiency and classification capability, a nonlinear Hebbian learning algorithm is applied for adjusting the FCM weights. To this end, 89 cases are studied. Three experts extracted seven main determinant characteristics of CD which were considered as FCM concepts. The mutual effects of these concepts on one another and on the final concept were expressed in the form of fuzzy rules and linguistic variables. Using the center of gravity defuzzifier, we obtained the numerical values of these weights and obtained the total weight matrix. Ultimately, combining the FCM model with PFCM algorithm, we obtained the grades A, B1, and B2 accuracies as 88, 90, and 91%, respectively. The main advantage of the proposed FCM is the good transparency and interpretability in the decision-making procedure, which make it a suitable tool for daily usage in the clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Stylios CD, Groumpos PP (2000) Fuzzy cognitive maps in modeling supervisory control systems. J Intell Fuzzy Syst 8:83–98

    MATH  Google Scholar 

  2. Amirkhani A, Shirzadeh M, Papageorgiou EI, Mosavi MR (2016) Visual-based quadrotor control by means of fuzzy cognitive maps. ISA Trans 60:128–142

    Article  Google Scholar 

  3. Mourhir A, Rachidi T, Papageorgiou EI et al (2016) A cognitive map framework to support integrated environmental assessment. Environ Model Softw 77:81–94

    Article  Google Scholar 

  4. Georgopoulos VC, Malandraki GA, Stylios CD (2003) A fuzzy cognitive map approach to differential diagnosis of specific language impairment. Artif Intell Med 29:261–278

    Article  Google Scholar 

  5. Amirkhani A, Mosavi MR, Naimi A (2015) Unsupervised fuzzy cognitive map in diagnosis of breast epithelial lesions. In: IEEE 22nd Iranian conference on biomedical engineering, pp 115–119

  6. Papageorgiou EI (2011) A new methodology for decisions in medical informatics using fuzzy cognitive maps based on fuzzy rule-extraction techniques. Appl Soft Comput 11:500–513

    Article  Google Scholar 

  7. Song H, Miao C, Roel W et al (2010) Implementation of fuzzy cognitive maps based on fuzzy neural network and application in prediction of time series. Fuzzy Syst IEEE Trans 18:233–250

    Google Scholar 

  8. Stach W, Kurgan LA, Pedrycz W (2008) Numerical and linguistic prediction of time series with the use of fuzzy cognitive maps. IEEE Trans Fuzzy Syst 16:61–72

    Article  Google Scholar 

  9. Papakostas GA, Boutalis YS, Koulouriotis DE, Mertzios BG (2008) Fuzzy cognitive maps for pattern recognition applications. Int J Pattern Recogn Artif Intell 22:1461–1486

    Article  Google Scholar 

  10. Papageorgiou EI, Stylios CD, Groumpos PP (2004) Active Hebbian learning algorithm to train fuzzy cognitive maps. Int J Approx Reason 37:219–249

    Article  MathSciNet  MATH  Google Scholar 

  11. Papageorgiou E, Stylios C, Groumpos P (2003) Fuzzy cognitive map learning based on nonlinear Hebbian rule. In: AI 2003 advanced artificial intelligence. Springer, pp 256–268

  12. Papageorgiou EI, Parsopoulos KE, Stylios C et al (2005) Fuzzy cognitive maps learning using particle swarm optimization. J Intell Inf Syst 25:95–121

    Article  Google Scholar 

  13. Stach W, Kurgan L, Pedrycz W, Reformat M (2005) Genetic learning of fuzzy cognitive maps. Fuzzy Sets Syst 153:371–401

    Article  MathSciNet  MATH  Google Scholar 

  14. Stach W (2010) Learning and aggregation of fuzzy cognitive maps—an evolutionary approach. Ph.D. Thesis, University of Alberta, Edmonton, AB, Canada. [Online]. Available: http://gradworks.umi.com/NR/62/NR62921.html

  15. Papageorgiou EI (2012) Learning algorithms for fuzzy cognitive maps—a review study. IEEE Trans Syst Man Cybern 42:150–163

    Article  Google Scholar 

  16. Papageorgiou EI, Salmeron JL (2013) A review of fuzzy cognitive maps research during the last decade. Fuzzy Syst IEEE Trans 21:66–79

    Article  Google Scholar 

  17. Papageorgiou EI, Stylios CD, Groumpos PP (2008) The soft computing technique of fuzzy cognitive maps for decision making in radiotherapy. In: Haas O, Burnham K (eds) Intelligent and adaptive systems in medicine, chap 5. Taylor & Francis, New York, pp 106–127

    Google Scholar 

  18. Papageorgiou EI (2012) Fuzzy cognitive map software tool for treatment management of uncomplicated urinary tract infection. Comput Methods Prog Biomed 105:233–245

    Article  Google Scholar 

  19. Papageorgiou EI, Spyridonos PP, Stylios CD et al (2006) Advanced soft computing diagnosis method for tumour grading. Artif Intell Med 36:59–70

    Article  Google Scholar 

  20. Amirkhani A, Mosavi MR, Mohammadizadeh F, Shokouhi SB (2014) Classification of intraductal breast lesions based on the fuzzy cognitive map. Arab J Sci Eng 39:3723–3732

    Article  Google Scholar 

  21. Papageorgiou EI, Froelich W (2012) Application of evolutionary fuzzy cognitive maps for prediction of pulmonary infections. IEEE Trans Inf Technol Biomed 16:143–149

    Article  Google Scholar 

  22. Ludvigsson JF, Leffler DA, Bai JC et al. (2013) The Oslo definitions for coeliac disease and related terms. Gut 62(1):43–52

    Article  Google Scholar 

  23. Nasiriyan-Rad H, Amirkhani A, Naimi A, Mohammadi K (2016) Learning fuzzy cognitive map with PSO algorithm for grading celiac disease. In: IEEE 23rd Iranian conference on biomedical engineering

  24. March MN (1992) Gluten, major histocompatibility complex, and the small intestine. Gastroenterology 102:330–354

    Article  Google Scholar 

  25. Oberhuber G, Granditsch G, Vogelsang H (1999) The histopathology of coeliac disease: time for a standardized report scheme for pathologists. Eur J Gastroenterol Hepatol 11:1185

    Article  Google Scholar 

  26. Corazza GR, Villanacci V (2005) Coeliac disease. J Clin Pathol 58:573–574

    Article  Google Scholar 

  27. Axelrod R (1976) Structure of decisions: the cognitive maps of political elites. Princeton University Press, Princeton

    Google Scholar 

  28. Kosko B (1986) Fuzzy cognitive maps. Int J Man Mach Stud 24:65–75

    Article  MATH  Google Scholar 

  29. Kim J, Han M, Lee Y, Park Y (2016) Futuristic data-driven scenario building: incorporating text mining and fuzzy association rule mining into fuzzy cognitive map. Expert Syst Appl 57:311–323

    Article  Google Scholar 

  30. Bueno S, Salmeron JL (2009) Benchmarking main activation functions in fuzzy cognitive maps. Expert Syst Appl 36:5221–5229

    Article  Google Scholar 

  31. Hassoun MH (1995) Fundamentals of artificial neural networks. MIT Press, London

    MATH  Google Scholar 

  32. Papageorgiou EI, Stylios C, Groumpos PP (2006) Unsupervised learning techniques for fine-tuning fuzzy cognitive map causal links. Int J Hum Comput Stud 64:727–743

    Article  Google Scholar 

  33. Kannappan A, Tamilarasi A, Papageorgiou EI (2011) Analyzing the performance of fuzzy cognitive maps with non-linear Hebbian learning algorithm in predicting autistic disorder. Expert Syst Appl 38:1282–1292

    Article  Google Scholar 

  34. Dunn JC (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Cybern Syst 3(3):32–57

    MathSciNet  MATH  Google Scholar 

  35. Bezdek JC (1973) Fuzzy mathematics in pattern classification. Ph.D. dissertation, Cornell University, Ithaca, NY

  36. Zhang L, Lu W, Liu X et al (2016) Fuzzy c-means clustering of incomplete data based on probabilistic information granules of missing values. Knowl-Based Syst 99:51–70

    Article  Google Scholar 

  37. Timm H, Borgelt C, Döring C, Kruse R (2004) An extension to possibilistic fuzzy cluster analysis. Fuzzy Sets Syst 147:3–16

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang J-S, Leung Y-W (2004) Improved possibilistic c-means clustering algorithms. Fuzzy Syst IEEE Trans 12:209–217

    Article  Google Scholar 

  39. Pal NR, Pal K, Keller JM, Bezdek JC (2005) A possibilistic fuzzy c-means clustering algorithm. Fuzzy Syst IEEE Trans 13:517–530

    Article  Google Scholar 

  40. Namkoong Y, Heo G, Woo YW (2010) An extension of possibilistic fuzzy c-means with regularization. In: 2010 IEEE international conference on fuzzy system (FUZZ). IEEE, pp 1–6

  41. Diri B, Albayrak S (2008) Visualization and analysis of classifiers performance in multi-class medical data. Expert Syst Appl 34:628–634

    Article  Google Scholar 

  42. Zhang D-Q, Chen S-C (2003) Clustering incomplete data using kernel-based fuzzy c-means algorithm. Neural Process Lett 18:155–162

    Article  Google Scholar 

  43. Babuka R, Van der Veen PJ, Kaymak U (2002) Improved covariance estimation for Gustafson–Kessel clustering. In: 2002 IEEE international conference on fuzzy system (FUZZ), pp 1081–1085

  44. Honda K, Sugiura N, Ichihashi H, Araki S (2001) Collaborative filtering using principal component analysis and fuzzy clustering. In: Web intelligence: research and development. Springer, pp 394–402

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad R. Mosavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirkhani, A., Mosavi, M.R., Mohammadi, K. et al. A novel hybrid method based on fuzzy cognitive maps and fuzzy clustering algorithms for grading celiac disease. Neural Comput & Applic 30, 1573–1588 (2018). https://doi.org/10.1007/s00521-016-2765-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2765-y

Keywords

Navigation