Skip to main content
Log in

Classification of motor imagery electroencephalography signals using spiking neurons with different input encoding strategies

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Motor imagery-based brain–computer interfaces decode users’ intentions from the electroencephalogram; however, poor spatial resolution makes automatic recognition of these intentions a challenging task. New classification approaches with low computational costs and high classification performances need to be developed in order to increase the number of users benefitted by these systems. On the other hand, spiking neuron models, which are mathematical abstractions of real neurons, have shown good performances in several classification tasks, making these models suitable for motor imagery classification. In this work, two different encoding strategies for spiking neuron models, applied to the classification of motor imagery time–frequency features of stroke patients and healthy subjects, were evaluated. Classification performances and computational costs of spiking neuron models were compared against those of linear discriminant analysis, support vector machines and artificial neural networks. Results showed that a time-varying encoding strategy is more suitable for motor imagery classification, and its implementation computational cost is low. Therefore, a spiking neuron model with a time-varying encoding strategy could increase the number of potential users of brain–computer interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Mozaffarian D, Benjamin EJ, Go AS et al (2015) Hearth disease and stroke statistics 2015 update a report from the American Heath Association. Circulation 131:29–322

    Article  Google Scholar 

  2. Rodriguez M, Llanos C, Sabate M (2009) The kinematicks of motor imagery: comparing the dynamics of real and virtual movements. Neuropsychologia 47(2):489–496

    Article  Google Scholar 

  3. Carrillo-de-la-peña MT, Galdo-Alvarez S, Lastra-Barreira C (2008) Equivalent is not equal: primary motor cortex (MI) activation during motor imagery and execution of sequential movements. Brain Res 1226:134–143

    Article  Google Scholar 

  4. Kraeutner S, Gionfriddo A, Bardouille C, Boe S (2014) Motor imagery-based brain activity parallels that of motor execution: evidence from magnetic source imaging of cortical oscillations. Brain Res 1588:81–91

    Article  Google Scholar 

  5. Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/EMG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1857

    Article  Google Scholar 

  6. Nguyen T, Khosravi T, Creighton D, Nahavandi S (2015) Fuzzy system with tabu search learning for classification of motor imagery data. Biomed Signal Proces 20:61–70

    Article  Google Scholar 

  7. Muller-Putz GR, Kaiser V, Solis-Escalante T, Prurtscheller G (2010) Fast set-up asynchronous brain-switch based on detection of foot motor imagery in 1-channel EEG. Med Biol Eng Comput 48:229–233

    Article  Google Scholar 

  8. Nguyen T, Khosravi A, Creighton D, Nahavandi S (2015) EEG data classification using wavelet features selected by Wilcoxon statistics. Neural Comput Appl 26:1193–1202

    Article  Google Scholar 

  9. Ahangi A, Karamnejad M, Mohammadi N, Ebrahimpour R, Bagheri N (2013) Multiple classifier system for EEG signal classification with application to brain–computer interfaces. Neural Comput Appl 23:1319–1327

    Article  Google Scholar 

  10. Xanthopoulos P, Pardalos PM, Trafalis TB (2013) Linear discriminant analysis. In: Xanthopoulos P, Pardalos PM, Trafalis TB (eds) Robust data mining, 1st edn. Springer, Berlin, pp 27–33

    Chapter  Google Scholar 

  11. Xanthopoulos P, Pardalos PM, Trafalis TB (2013) Support vector machines. In: Xanthopoulos P, Pardalos PM, Trafalis TB (eds) Robust data mining, 1st edn. Springer, Berlin, pp 35–48

    Chapter  Google Scholar 

  12. Xingui H, Shaohua X (2010) Artificial neural networks. In: Xingui H, Shaohua X (eds) Process neural networks, theory and applications. Springer, Berlin, pp 20–42

  13. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Article  Google Scholar 

  14. Gerstner W, Kistler WM (2002) Formal spiking neuron models. In: Gerstner W, Kistler WM (eds) Spiking neuron models. Cambridge University Press, Cambridge, pp 94–97

    Chapter  Google Scholar 

  15. Izhikevich EM (2003) Simple model of spiking neurons. IEEE T Neural Networ 14:1569–1572

    Article  Google Scholar 

  16. Xu Y, Zeng X, Lixin H, Jing Y (2013) A supervised multi-spike learning algorithm based on gradient descent for spiking neural networks. Neural Netw 43:99–113

    Article  MATH  Google Scholar 

  17. Bohte SM, Kok JN, La Poutré H (2002) Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48:17–37

    Article  MATH  Google Scholar 

  18. Yu Q, Tang H, Tan KC, Yu H (2014) A brain-inspired spiking neural network model with temporal encoding and learning. Neurocomputing 138:3–13

    Article  Google Scholar 

  19. Gutig R, Sompolinsky H (2006) The tempotron a neuron that learns spike timing based decisions. Nat Neurosci 9:420–428

    Article  Google Scholar 

  20. Polunak F, Kasinski A (2010) Supervised learning in spiking neural networks with resume: sequence learning, classification and spike shifting. Neural Comput 22(2):467–510

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang J, Belatreche A, Maguire L, McGinnity TA (2014) An online supervised learning method for spiking neural networks with adaptive structure. Neurocomputing 144:526–536

    Article  Google Scholar 

  22. Kasabov NK (2014) NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Netw 52:62–76

    Article  Google Scholar 

  23. Cachon A, Vázquez RA (2015) Tuning the parameters of an integrate and fire neuron via a genetic algorithm for solving pattern recognition problems. Neurocomputing 148:187–197

    Article  Google Scholar 

  24. Garro BA, Rodriguez K, Vazquez RA (2016) Classification of DNA microarrays using artificial neural networks and ABC algorithm. Appl Soft Comput 38:548–560

    Article  Google Scholar 

  25. Vazquez RA, Garro BA (2015) Training spiking neural models using artificial bee colony. Comput Intel Neurosci. doi:10.1155/2015/947098

    Google Scholar 

  26. Garro BA, Vázquez RA (2015) Designing artificial neural networks using particle swarm optimization algorithms. Comput Intel Neurosci. doi:10.1155/2015/369298

    Google Scholar 

  27. Kampakis S (2012) Improved Izhikevich neurons for spiking neural networks. Soft Comput 16(6):943–953

    Article  Google Scholar 

  28. Kasabov N, Capecci E (2015) Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes. Inform Sci 294:565–575

    Article  MathSciNet  Google Scholar 

  29. Chen Y, Hu J, Kasabov N, Hou Z, Cheng L (2013) NeuCubRehab: a pilot study for EEG classification in rehabilitation practice based on spiking neural networks. In: Lee M, Hirose A, Hou ZG, Kil RM (eds) Neural information processing. Springer, Berlin, pp 70–77

    Chapter  Google Scholar 

  30. Pfurtscheller G, Nueper C (2001) Motor imagery and direct brain–computer communication. Proc IEEE 89(7):1123–1134

    Article  Google Scholar 

  31. Hjort B (1975) An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroen Clin Neuro 39:526–530

    Article  Google Scholar 

  32. Cantillo-Negrete J, Gutierrez-Martinez J, Flores-Rodriguez TB, Carino-Escobar RI, Elias-Vinas D (2014) Characterization of electrical brain activity related to hand motor imagery on healthy subjects. Rev Invest Clin 66(S1):111–121

    Google Scholar 

  33. Cantillo-Negrete J, Gutíerrez-Martínez J, Carino-Escobar RI, Carrillo-Mora P, Elias-Viñas D (2014) An approach to improve the performance of subject-independent BCIs-based on motor imagery allocating subjects by gender. BioMed Eng OnLine. doi:10.1186/1475-925X-13-158

    Google Scholar 

  34. Oostenveld R, Fries P, Eric M, Shoffelen J-M (2011) FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intel Neurosci. doi:10.1155/2011/156869

    Google Scholar 

  35. Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability bursting. MIT Press, Cambridge

    Google Scholar 

  36. Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. In: Proceedings of the IEEE international conference on evolutionary computation, pp 69–73

  37. Muller-Putz JR, Sherer R, Brunner C, Leeb R, Pfurtscheller G (2008) Better than random? A closer look on BCI results. Int J Bioeletromagn 10:52–55

    Google Scholar 

  38. Edlinger G, Allison BZ, Guger C (2014) How many people can use a BCI system? In: Kansaku K, Cohen LG, Birbaumer N (eds) Clinical systems neuroscience. Springer, Berlin, pp 33–66

  39. Choi D, Ryu Y, Lee Y, Lee M (2011) Performance evaluation of a motor-imagery-based EEG-Brain computer interface using a combined cue with heterogeneos training data in BCI-Naïve subjects. BioMed Eng Online 10(91):1–12

    Google Scholar 

  40. Rodríguez-Bermúdez G, García-Laecina P (2012) Automatic and adaptative classification of electroencephalographic signals for brain computer interfaces. J Med Syst 36(1):51–63

    Article  Google Scholar 

  41. Li Y, Koike Y (2011) A real-time BCI with a small number of channels based on CSP. Neural Comput Appl 20:1187–1192

    Article  Google Scholar 

  42. Song S, Zhan Z, Long Z, Zhang J, Yao L (2011) Comparative study of SVM methods combined with voxel selection for object category classification on fMIR data. PLoS ONE. doi:10.1371/journal.pone.0017191

    Google Scholar 

  43. Kasabov N, Scott N, Tu E, Marks S, Sengupta N, Capecci E, Othman M, Doborjeh M, Murli N, Hartono R, Espinosa-Ramos J, Zhou L, Alvi F, Wang G, Taylor D, Gulyaev S, Mahmoud M, Hou ZG, Yang J (2016) Evolving spatio-temporal data machines based on the NeuCube neuromorphic framework: design methodology and selected applications. Neural Networks 78:1–14

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Consejo Nacional de Ciencia y Tecnología and Universidad La Salle for the economic support under Grant SALUD-2015-2-262061 and NEC-03/15, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben I. Carino-Escobar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carino-Escobar, R.I., Cantillo-Negrete, J., Gutierrez-Martinez, J. et al. Classification of motor imagery electroencephalography signals using spiking neurons with different input encoding strategies. Neural Comput & Applic 30, 1289–1301 (2018). https://doi.org/10.1007/s00521-016-2767-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2767-9

Keywords