Skip to main content

Advertisement

Log in

An urban traffic simulation model for traffic congestion predicting and avoiding

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Urban traffic congestion is a common problem that affects many cities around the world. In this paper, an actual urban traffic simulation model (AUTM) for traffic congestion predicting and avoiding is proposed, which includes three key components: the map and transfer (MT) conversion method, the optimized spatial evolution rules, and a congestion-avoidance routing algorithm. Three key techniques are combined in our proposed model: (1) The MT conversion method is proposed to get actual urban cellular spaces, which apply the optimized spatial evolution rules to simulate the vehicular dynamics better. (2) AUTM is proposed for simulating traffic congestion and predicting the effect of adding overpasses and roadblocks. (3) The congestion-avoidance routing algorithm is proposed for vehicles to dynamically update their routes toward their destinations, which can achieve traffic optimization in urban simulations. This paper presents the results of applying this novel model to a large-scale real-world case in different urban traffic congestion situations. Extensive experimental simulations in various actual cities have been carried out. Our results in the extreme case are encouraging: The prediction accuracy of traffic congestions is almost 89%, and the variance of prediction road density is less than 0.15.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sorstedt J, Svensson L, Sandblom F et al (2011) A new vehicle motion model for improved predictions and situation assessment. IEEE Trans Intell Transp Syst 12(4):1209–1219

    Article  Google Scholar 

  2. Akanegawa M, Tanaka Y, Nakagawa M (2001) Basic study on traffic information system using LED traffic lights. IEEE Trans Intell Transp Syst 2(4):197–203

    Article  Google Scholar 

  3. Hu W, Wang H, Qiu Z, Nie C, Yan L (2016) A quantum particle swarm optimization driven urban traffic light scheduling model. Neural Comput Appl 1–11. doi:10.1007/s00521-016-2508-0

  4. Hu W, Wang H, Yan L, Du B (2016) A swarm intelligent method for traffic light scheduling: application to real urban traffic networks. Appl Intell 44(1):1–24

    Article  Google Scholar 

  5. Bham GH, Benekohal RF (2004) A high fidelity traffic simulation model based on cellular automata and car-following concepts. Transp Res Part C Emerg Technol 12(1):1–32

    Article  Google Scholar 

  6. Newell GF (2002) A simplified car-following theory: a lower order model. Transp Res Part B Methodol 36(3):195–205

    Article  Google Scholar 

  7. Helbing D, Hennecke A, Shvetsov V et al (2001) MASTER: macroscopic traffic simulation based on a gas-kinetic, non-local traffic model. Transp Res Part B Methodol 35(2):183–211

    Article  Google Scholar 

  8. Daganzo CF (1994) The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory. Transp Res Part B Methodol 28(4):269–287

    Article  Google Scholar 

  9. Biham O, Middleton AA, Levine D (1992). Self-organization and a dynamical transition in traffic flow models. arXiv preprint cond-mat/9206001

  10. D’Souza RM (2005) Coexisting phases and lattice dependence of a cellular automaton model for traffic flow. Phys Rev E 71(6):066112

    Article  Google Scholar 

  11. Zhang Z, Tao W (2016) Pedestrian detection in binocular stereo sequence based on appearance consistency segmentation. IEEE Trans Circuits Syst Video Technol 26(9):1772–1785

    Article  Google Scholar 

  12. Hu W, Yan L, Liu K, Wang H (2016) A short-term traffic flow forecasting method based on the hybrid PSO-SVR. Neural Process Lett 43(1):155–172

    Article  Google Scholar 

  13. Xie JR, Jiang R, Ding ZJ, Li QL, Wang BH (2013) Dynamical traffic light strategy in the Biham–Middleton–Levine model. Phys Rev E 87(2):022812

    Article  Google Scholar 

  14. Srinivasan D, Choy MC, Cheu RL (2006) Neural networks for real-time traffic signal control. IEEE Trans Intell Transp Syst 7(3):261–272

    Article  Google Scholar 

  15. Zhang HM (2002) A non-equilibrium traffic model devoid of gas-like behavior. Transp Res Part B Methodol 36(3):275–290

    Article  Google Scholar 

  16. Benyoussef A, Chakib H, Ez-Zahraouy H (2003) Anisotropy effect on two-dimensional cellular-automaton traffic flow with periodic and open boundaries. Phys Rev E 68(2):026129

    Article  Google Scholar 

  17. Fukui M, Oikawa H, Ishibashi Y (1996) Flow of cars crossing with unequal velocities in a two-dimensional cellular automaton model. J Phys Soc Jpn 65(8):2514–2517

    Article  Google Scholar 

  18. Török J, Kertész J (1996) The green wave model of two-dimensional traffic: transitions in the flow properties and in the geometry of the traffic jam. Phys A 231(4):515–533

    Article  Google Scholar 

  19. Nagatani T (1993) Jamming transition in the traffic-flow model with two-level crossings. Phys Rev E 48(5):3290

    Article  Google Scholar 

  20. Ding ZJ, Jiang R, Gao ZY, Wang BH, Long J (2013) Effect of overpasses in the Biham–Middleton–Levine traffic flow model with random and parallel update rule. Phys Rev E 88(2):022809

    Article  Google Scholar 

  21. Sohn K (2008) A systematic decision criterion for the elimination of useless overpasses. Transp Res Part A Policy Pract 42(8):1043–1055

    Article  Google Scholar 

  22. Nishinari K, Takahashi D (1998) Analytical properties of ultra-discrete Burgers equation and rule-184 cellular automaton. J Phys A Math Gen 31(24):5439

    Article  MATH  Google Scholar 

  23. Nishinari K, Takahashi D (2000) Multi-value cellular automaton models and metastable states in a congested phase. J Phys A Math Gen 33(43):7709

    Article  MathSciNet  MATH  Google Scholar 

  24. Benyoussef A, Chakib H, Ez-Zahraouy H (2003) Anisotropy effect on two-dimensional cellular-automaton traffic flow with periodic and open boundaries. Phys Rev E 68(2):026129

    Article  Google Scholar 

  25. Zhao XM, Xie DF, Jia B, Jiang R, Gao ZY (2011) Disorder structure of free-flow and global jams in the extended BML model. Phys Lett A 375(7):1142–1147

    Article  Google Scholar 

  26. Levinson D, Yerra B (2006) Self-organization of surface transportation networks. Transp Sci 40(2):179–188

    Article  Google Scholar 

  27. Li K, Zhang J, Tao W (2016) Unsupervised co-segmentation for indefinite number of common foreground objects. IEEE Trans Image Process A Publ IEEE Signal Process Soc 25(4):1898–1909

    MathSciNet  Google Scholar 

  28. Hu WB, Liang HL, Peng C, Du B, Hu Q (2013) A hybrid chaos-particle swarm optimization algorithm for the vehicle routing problem with time window. Entropy 15:1247–1270

    Article  MathSciNet  MATH  Google Scholar 

  29. Haggett P, Chorley RJ (1974) Network analysis in geography. Network Analysis–methodological Challenges 136(136)

  30. Newman ME (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256

    Article  MathSciNet  MATH  Google Scholar 

  31. Echenique P, Gómez-Gardeñes J, Moreno Y (2004) Improved routing strategies for Internet traffic delivery. Phys Rev E 70(5):056105

    Article  Google Scholar 

  32. Echenique P, Gómez-Gardeñes J, Moreno Y (2005) Dynamics of jamming transitions in complex networks. EPL (Europhys Lett) 71(2):325

    Article  Google Scholar 

  33. Cardillo A, Scellato S, Latora V, Porta S (2006) Structural properties of planar graphs of urban street patterns. Phys Rev E 73(6):066107

    Article  Google Scholar 

  34. Barthélemy M, Flammini A (2008) Modeling urban street patterns. Phys Rev Lett 100(13):138702

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by National Natural Science Foundation of China (61572369, 61471274); National Natural Science Foundation of Hubei Province (2015CFB423); Wuhan Major Science and Technology Program (2015010101010023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Wang, H., Qiu, Z. et al. An urban traffic simulation model for traffic congestion predicting and avoiding. Neural Comput & Applic 30, 1769–1781 (2018). https://doi.org/10.1007/s00521-016-2785-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2785-7

Keywords

Navigation