Skip to main content
Log in

Optimized radial basis function neural network for improving approximate dynamic programming in pricing high dimensional options

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Pricing American basket option is one of the essential problems in quantitative finance. The complexity of this type of option has motivated many practitioners and researchers to develop simulation-based methods. In this paper, we develop an optimized radial basis function neural network (RBFNN), which is optimally tuned by the particle swarm optimization algorithm to enhance the efficiency and accuracy of approximate dynamic programming (ADP) for pricing the American basket option. Additionally, for the scenario generation, a simulation-based technique using a copula-GARCH method and Extreme Value Theory is performed to tackle the nonlinearity of dependencies between variables. The prices obtained through the proposed approach compared with those ones achieved from pure RBFNN and ADP in different situations. This is also illustrated that the obtained prices of American basket option can outperform the results obtained through the RBFNN and ADP approaches in terms of the predefined fitness measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mitchell D, Goodman J, Muthuraman K (2014) Boundary evolution equations for American options. Math Finance 24(3):505–532

    Article  MathSciNet  MATH  Google Scholar 

  2. Moon K-S, Kim W-J, Kim H (2008) Adaptive lattice methods for multi-asset models. Comput Math Appl 56(2):352–366. doi:10.1016/j.camwa.2007.12.008

    Article  MathSciNet  MATH  Google Scholar 

  3. Cortazar G, Gravet M, Urzua J (2008) The valuation of multidimensional American real options using the LSM simulation method. Comput Oper Res 35(1):113–129. doi:10.1016/j.cor.2006.02.016

    Article  MATH  Google Scholar 

  4. Bandi C, Bertsimas D (2014) Robust option pricing. Eur J Oper Res 239(3):842–853. doi:10.1016/j.ejor.2014.06.002

    Article  MathSciNet  MATH  Google Scholar 

  5. Cox JC, Ross SA, Rubinstein M (1979) Option pricing: a simplified approach. J Financ Econ 7(3):229–263. doi:10.1016/0304-405X(79)90015-1

    Article  MATH  Google Scholar 

  6. Barraquand J, Martineau D (1995) Numerical valuation of high dimensional multivariate American securities. J Financ Quant Anal 30(03):383–405

    Article  Google Scholar 

  7. Powell WB (2011) Approximate dynamic programming: solving the curses of dimensionality, 2nd edn. Wiley, Hoboken

    Book  MATH  Google Scholar 

  8. Gosavi A (2014) Simulation-based optimization: parametric optimization techniques and reinforcement learning, vol 55. Springer, New York

    MATH  Google Scholar 

  9. Longstaff FA, Schwartz ES (2001) Valuing American options by simulation: a simple least-squares approach. Rev Financ Stud 14(1):113–147. doi:10.1093/rfs/14.1.113

    Article  MATH  Google Scholar 

  10. Clément E, Lamberton D, Protter P (2002) An analysis of a least squares regression method for American option pricing. Finance Stoch 6(4):449–471

    Article  MathSciNet  MATH  Google Scholar 

  11. Glasserman P, Yu B (2004) Number of paths versus number of basis functions in American option pricing. Ann Appl Probab 14(4):2090–2119

    MathSciNet  MATH  Google Scholar 

  12. Glasserman P (2003) Monte Carlo methods in financial engineering, vol 53. Springer, New York

    Book  MATH  Google Scholar 

  13. Areal N, Rodrigues A, Armada MR (2008) On improving the least squares Monte Carlo option valuation method. Rev Deriv Res 11(1–2):119–151

    Article  MATH  Google Scholar 

  14. Fromkorth A, Kohler M (2015) On the consistency of regression-based Monte Carlo methods for pricing Bermudan options in case of estimated financial models. Math Finance 25(2):371–399

    Article  MathSciNet  MATH  Google Scholar 

  15. Chevreuil M, Lebrun R, Nouy A, Rai P (2015) A least-squares method for sparse low rank approximation of multivariate functions. SIAM/ASA J Uncertain Quant 3(1):897–921

    Article  MathSciNet  MATH  Google Scholar 

  16. Schilling RJ, Carroll JJ Jr, Al-Ajlouni AF (2001) Approximation of nonlinear systems with radial basis function neural networks. IEEE Trans Neural Netw 12(1):1–15

    Article  Google Scholar 

  17. Chen D, Han W (2013) Prediction of multivariate chaotic time series via radial basis function neural network. Complexity 18(4):55–66

    Article  Google Scholar 

  18. Sermpinis G, Theofilatos K, Karathanasopoulos A, Georgopoulos EF, Dunis C (2013) Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and Particle Swarm Optimization. Eur J Oper Res 225(3):528–540. doi:10.1016/j.ejor.2012.10.020

    Article  MathSciNet  MATH  Google Scholar 

  19. Patra A, Das S, Mishra SN, Senapati (2015) An adaptive local linear optimized radial basis functional neural network model for financial time series prediction. Neural Comput Appl. doi:10.1007/s00521-015-2039-0

    Google Scholar 

  20. Hajizadeh E, Mahootchi M, Esfahanipour A, Massahi Kh. M (2015) A new NN-PSO hybrid model for forecasting Euro/Dollar exchange rate volatility. Neural Comput Appl. doi:10.1007/s00521-015-2032-7

    Google Scholar 

  21. Tian S, Hamori S (2015) Modeling interest rate volatility: a realized GARCH approach. J Bank Finance 61:158–171. doi:10.1016/j.jbankfin.2015.09.008

    Article  Google Scholar 

  22. Gouriéroux C (2012) ARCH models and financial applications. Springer, New York

    MATH  Google Scholar 

  23. Davari-Ardakani H, Aminnayeri M, Seifi A (2016) Multistage portfolio optimization with stocks and options. Int Trans Oper Res 23(3):593–622

    Article  MathSciNet  MATH  Google Scholar 

  24. Cornuejols G, Tütüncü R (2007) Optimization methods in finance. Cambridge University Press, USA

    MATH  Google Scholar 

  25. Brandt MW, Goyal A, Santa-Clara P, Stroud JR (2005) A simulation approach to dynamic portfolio choice with an application to learning about return predictability. Rev Financ Stud 18(3):831–873

    Article  Google Scholar 

  26. Tsitsiklis JN, Roy BV (2001) Regression methods for pricing complex American-style options. IEEE Trans Neural Netw 12(4):694–703. doi:10.1109/72.935083

    Article  Google Scholar 

  27. Haugh MB, Kogan L (2007) Chapter 22 duality theory and approximate dynamic programming for pricing american options and portfolio optimization. In: John RB, Vadim L (eds) Handbooks in operations research and management science, vol 15. Elsevier, pp 925–948. doi:10.1016/S0927-0507(07)15022-2

  28. Powell MJ (1987) Radial basis functions for multivariable interpolation: a review. In: Mason J, Cox M (eds)Algorithms for approximation. Clarendon Press, New York, pp 143–167

  29. Micchelli CA (1984) Interpolation of scattered data: distance matrices and conditionally positive definite functions. Springer, New York

    MATH  Google Scholar 

  30. Lowe D (1988) Multi-variable functional interpolation and adaptive networks. Complex Syst 2:321–355

    MATH  Google Scholar 

  31. Poggio T, Girosi F (1990) Networks for approximation and learning. Proc IEEE 78(9):1481–1497

    Article  MATH  Google Scholar 

  32. Park J, Sandberg IW (1993) Approximation and radial-basis-function networks. Neural Comput 5(2):305–316

    Article  Google Scholar 

  33. Yu H, Xie T, Paszczynski S, Wilamowski BM (2011) Advantages of radial basis function networks for dynamic system design. IEEE Trans Ind Electron 58(12):5438–5450

    Article  Google Scholar 

  34. Tatar A, Naseri S, Sirach N, Lee M, Bahadori A (2015) Prediction of reservoir brine properties using radial basis function (RBF) neural network. Petroleum 1(4):349–357

    Article  Google Scholar 

  35. Kenndy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, pp 1942–1948

  36. Thomas J, Mahapatra SS (2016) Improved simple optimization (SOPT) algorithm for unconstrained non-linear optimization problems. Perspect Sci 8:159–161. doi:10.1016/j.pisc.2016.04.021

    Article  Google Scholar 

  37. Ou C, Lin W (2006) Comparison between PSO and GA for parameters optimization of PID controller. In: 2006 International conference on mechatronics and automation

  38. Chai S, Li YB, Wu C, Wang J (2013) A Comparison of Genetic algorithm, particle swarm optimization and simulated annealing in real-time task scheduling on CMP. In: Advanced Materials Research, Trans Tech Publ, pp 77–81

  39. You P-S (2008) An efficient computational approach for railway booking problems. Eur J Oper Res 185(2):811–824

    Article  MathSciNet  MATH  Google Scholar 

  40. Dye C-Y, Ouyang L-Y (2011) A particle swarm optimization for solving joint pricing and lot-sizing problem with fluctuating demand and trade credit financing. Comput Ind Eng 60(1):127–137. doi:10.1016/j.cie.2010.10.010

    Article  Google Scholar 

  41. Zhai S, Jiang T (2014) A novel particle swarm optimization trained support vector machine for automatic sense-through-foliage target recognition system. Knowl Based Syst 65:50–59. doi:10.1016/j.knosys.2014.04.005

    Article  Google Scholar 

  42. Liu J, Jin X, Wang T, Yuan Y (2015) Robust multi-period portfolio model based on prospect theory and ALMV-PSO algorithm. Expert Syst Appl 42(20):7252–7262. doi:10.1016/j.eswa.2015.04.063

    Article  Google Scholar 

  43. Yadav N, Yadav A, Kumar M, Kim JH (2015) An efficient algorithm based on artificial neural networks and particle swarm optimization for solution of nonlinear Troesch’s problem. Neural Comput Appl. doi:10.1007/s00521-015-2046-1

    Google Scholar 

  44. Panda S, Padhy NP (2008) Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design. Appl Soft Comput 8(4):1418–1427

    Article  Google Scholar 

  45. Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73

    Article  Google Scholar 

  46. McNeil AJ, Frey R (2000) Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach. J Empir Finance 7(3–4):271–300. doi:10.1016/S0927-5398(00)00012-8

    Article  Google Scholar 

  47. Hansen PR, Lunde A (2005) A forecast comparison of volatility models: does anything beat a GARCH (1, 1)? J Appl Econom 20(7):873–889

    Article  MathSciNet  Google Scholar 

  48. Garcia RC, Contreras J, Van Akkeren M, Garcia JBC (2005) A GARCH forecasting model to predict day-ahead electricity prices. IEEE Trans Power Syst 20(2):867–874

    Article  Google Scholar 

  49. Nelson DB (1991) Conditional heteroskedasticity in asset returns: a new approach. Econom: J Econom Soc 59(2):347–370

  50. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  MathSciNet  MATH  Google Scholar 

  51. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  MathSciNet  MATH  Google Scholar 

  52. Brockwell PJ, Davis RA (2006) Introduction to time series and forecasting. Springer, New York

    MATH  Google Scholar 

  53. Nystrom K, Skoglund J (2002) Univariate extreme value theory, garch and measures of risk. Preprint, Swedbank

  54. Bouyé E, Durrleman V, Nikeghbali A, Riboulet G, Roncalli T (2000) Copulas for finance-a reading guide and some applications. Available at SSRN 1032533

  55. Daul S, De Giorgi EG, Lindskog F, McNeil A (2003) The grouped t-copula with an application to credit risk. Available at SSRN 1358956

  56. Lee S, Kim B (2015) Copula parameter change test for nonlinear AR models with nonlinear GARCH errors. Stat Methodol 25:1–22. doi:10.1016/j.stamet.2014.12.001

    Article  MathSciNet  Google Scholar 

  57. Li M, Yang L (2013) Modeling the volatility of futures return in rubber and oil—a Copula-based GARCH model approach. Econ Model 35:576–581. doi:10.1016/j.econmod.2013.07.016

    Article  Google Scholar 

  58. Sklar M (1959) Fonctions de répartition à n dimensions et leurs marges. Université Paris 8

  59. Engle RF (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50(4):987–1007

    Article  MathSciNet  MATH  Google Scholar 

  60. Ljung GM, Box GEP (1978) On a measure of a lack of fit in time series models. Biometrika 65(2):297–303. doi:10.1093/biomet/65.2.297

    Article  MATH  Google Scholar 

  61. Diebold FX, Mariano RS (2012) Comparing predictive accuracy. J Bus Econ Stat 13(3):253–263

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Mahootchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajizadeh, E., Mahootchi, M. Optimized radial basis function neural network for improving approximate dynamic programming in pricing high dimensional options. Neural Comput & Applic 30, 1783–1794 (2018). https://doi.org/10.1007/s00521-016-2802-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2802-x

Keywords

Navigation