Skip to main content

Advertisement

Log in

A memetic algorithm for minimum independent dominating set problem

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The minimum independent dominating set (MIDS) problem is a popular NP-hard combinatorial optimization problem which has been widely used in various fields. In this paper, a tabu search-based memetic algorithm is designed for MIDS based on two novel ideas, i.e., the forgetting-based vertex weighting strategy and the repairing-based crossover strategy. The former strategy utilizes the current information of local search and simultaneously plays a key role in exploiting the possible spaces. On the other hand, the latter strategy not only inherits the results of parent solutions, but also makes up the infeasible solution. Furthermore, the tabu mechanism is used to solve the serious cycle problem arising in the search process. The experimental results show that our memetic algorithm performs better than a previous state-of-the-art heuristic algorithm for MIDS on DIMACS benchmark.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Michael RG, David SJ (1979) Computers and intractability: a guide to theory of NP-completeness. WH Freeman, San Francisco

    MATH  Google Scholar 

  2. Lin CR, Gerla M (1997) Adaptive clustering for mobile wireless network. IEEE J Sel Areas Commun 15(7):1265–1275

    Article  Google Scholar 

  3. Nocetti FG, Gonzalez JS, Stojmenovic I (2003) Connectivity based k-hop clustering in wireless networks. Telecommun Syst 22(1–4):205–220

    Article  Google Scholar 

  4. Erciyes K, Dagdeviren O, Cokuslu D et al (2007) Graph theoretic clustering algorithm in mobile ad hoc networks and wireless sensor networks. Appl Comput Math 6(2):162–180

    MathSciNet  MATH  Google Scholar 

  5. Chen Y, Liestman A, Liu J (2004) Clustering algorithms for ad hoc wireless networks. Ad Hoc Sens Netw 28:1–16

    Google Scholar 

  6. Xie Shengdong, Wang YuXiang (2014) Construction of Tree network with limited delivery latency in homogeneous wireless sensor networks. Wirel Pers Commun 78(1):231–246

    Article  Google Scholar 

  7. Akkaya K, Senel F, McLaughlan B (2009) Clustering of wireless sensor and actor networks based on sensor distribution and connectivity. J Parallel Distrib Comput 69(6):573–587

    Article  Google Scholar 

  8. Halldórsson MM (1993) Approximating the minimum maximal independence number. Inf Process Lett 46(4):169–172

    Article  MathSciNet  Google Scholar 

  9. Johnson DS, Yannakakis M, Papadimitriou CH (1998) On generating all maximal independent sets. Inf Process Lett 27(3):119–123

    Article  MathSciNet  Google Scholar 

  10. Moon JW, Moser L (1965) On cliques in graphs. Israel J Math 3(1):23–28

    Article  MathSciNet  Google Scholar 

  11. Gaspers S, Liedloff M (2006) A branch-and-reduce algorithm for finding a minimum independent dominating set in graph. Graph-theoretic concepts in computer science. Springer, Berlin, pp 78–89

    MATH  Google Scholar 

  12. Bourgeois N, Della Croce F, Escoffier B et al (2013) Fast algorithm for min independent dominating set. Discrete Appl Math 161(4):558–572

    Article  MathSciNet  Google Scholar 

  13. Cai SW, Su KL, Luo C et al (2013) Numvc: an efficient local search algorithm for minimum vertex cover. J Artif Intell Res 46:687–716

    Article  MathSciNet  Google Scholar 

  14. Huang P, Yin M (2014) An upper(lower) bound for max(min) CSP. Sci China Inf Sci 57(7):1–9

    MathSciNet  MATH  Google Scholar 

  15. Gao J, Wang J, Yin M (2015) Experimental analyses on phase transitions in compiling satisfiability problems. Sci China Inf Sci 58(3):1–11

    Article  Google Scholar 

  16. Wang YY, Ouyang DT, Zhang L et al (2015) A novel local search for unicost set covering problem using hyperedge configuration checking and weight diversity. Sci China Inf Sci. doi:10.1007/s11432-015-5377-8

    Article  Google Scholar 

  17. Wang YY, Cai SW, Yin MH (2016) Two efficient local search algorithms for maximum weight clique problem. AAAI2016, pp 805–811

  18. Wang YY, Yin MH, Ouyang DT et al (2016) A novel local search algorithm with configuration checking and scoring mechanism for the set k-covering problem. Int Trans Oper Res. doi:10.1111/itor.12280

    Article  MATH  Google Scholar 

  19. Li RZ, Hu SL, Gao J et al (2016) GRASP for connected dominating set problems. Neural Comput Appl. doi:10.1007/s00521-016-2429-y

    Article  Google Scholar 

  20. Zhou YP, Zhang HC, Li RZ et al (2016) Two local search algorithm for partition vertex cover problem. J Comput Theor Nanosci 13(1):743–751

    Article  Google Scholar 

  21. Wang YY, Ouyang DT, Zhang L (2016) Variable quality checking for backbone computation. Electron Lett 52(21):1769–1771

    Article  Google Scholar 

  22. Wang YY, Wang J (2016) An effective local search algorithm for a special hitting set problem. Transylv Rev 24(80):1–11

    Google Scholar 

  23. Li RZ, Hu SL, Zhang H et al (2016) An efficient local search framework for the minimum weighted vertex cover problem. Inf Sci 372:428–445

    Article  Google Scholar 

  24. Cai SW, Su KL, Sattar Abdul et al (2011) Local search with edge weighting and configuration checking heuristics for minimum vertex cover. Artif Intell 175(2011):1672–1696

    Article  MathSciNet  Google Scholar 

  25. Wang YY, Li RZ, Zhou YP, Yin MH (2016) A path cost-based GRASP for minimum independent dominating set problem. Neural Comput Appl. doi:10.1007/s00521-016-2324-6

    Article  Google Scholar 

  26. Johnson DS, Trick MA (1993) Cliques, coloring, and satisfiability: second DIMACS implementation challenge, vol 26. American Mathematical Society, Providence

    MATH  Google Scholar 

  27. Wu QH, Hao JK (2012) A memetic approach for the max-cut problem. Springer, Berlin, pp 297–306

    Google Scholar 

  28. Chen X, Ong YS, Lim MH, Tan KC (2011) A multi-facet survey on memetic computation. IEEE Trans Evolut Comput 15(5):591–607

    Article  Google Scholar 

  29. Feng L, Ong YS, Lim MH, Tsang IWH (2015) Memetic search with inter-domain learning: a realization between CVRP and CARP. IEEE Trans Evol Comput 19(5):644–658

    Article  Google Scholar 

  30. Hao JK (2012) Memetic algorithms in discrete optimization. In: F, Neri, C. Cotta, P. Moscato (eds) Handbook of memetic algorithms. Studies in Computational Intelligence 379, Chapter 6, pp 73–94

  31. Jaszkiewicz A (2002) On the performance of multiple-objective genetic local search on the 0/1 knapsack problem: a comparative experiment. IEEE Trans Evolut Comput 6(4):402–412

    Article  Google Scholar 

  32. Li RZ, Hu SL, Wang YY, Yin MH (2016) A local search algorithm with tabu strategy and perturbation mechanism for generalized vertex cover problem. Neural Comput Appl. doi:10.1007/s00521-015-2172-9

    Article  Google Scholar 

  33. Glover F (1989) Tabu search-part I. ORSA J Comput 1(3):190–206

    Article  Google Scholar 

  34. Glover F (1990) Tabu search-part II. ORSA J Comput 2(1):4–32

    Article  Google Scholar 

  35. Bin Gu, Sheng Victor S, Wang Zhijie, Ho Derek, Osman Said, Li Shuo (2015) Incremental learning for ν-support vector regression. Neural Netw 67:140–150

    Article  Google Scholar 

  36. Aiex RM, Resende MGC, Ribeiro CC (2007) TTT plots: a perl program to create time-to-target plots. Optim Lett 1:355–366

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSFC (under Grant Nos. 61502464, 61370156, 61503074, 61403076, 61402070, and 61403077) and the Program for New Century Excellent Talents in University (NCET-13-0724).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghao Yin.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Chen, J., Sun, H. et al. A memetic algorithm for minimum independent dominating set problem. Neural Comput & Applic 30, 2519–2529 (2018). https://doi.org/10.1007/s00521-016-2813-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2813-7

Keywords