Skip to main content
Log in

Heat transfer analysis in ferromagnetic viscoelastic fluid flow over a stretching sheet with suction

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this article, an investigation has been performed to explore the two-dimensional boundary layer flow problem and heat transfer characteristic of ferromagnetic viscoelastic fluid flow over a stretching surface with a linear velocity under the impact of magnetic dipole and suction. The governing PDEs are converted into a system of nonlinear ODEs by applying appropriate similarity approach. The modelled equations are then solved numerically by utilizing efficient Runge–Kutta–Fehlberg procedure based on shooting algorithm. Influence of pertinent flow parameter involved, such as ferromagnetic interaction parameter, suction parameter, viscoelastic parameter, Prandtl number on dimensionless velocity, temperature, skin friction, and Nusselt inside the boundary layer, are portrayed graphically and discussed. The results show that pressure profile and skin friction coefficient increase with the variation of ferromagnetic interaction parameter and opposite behaviour is noted for local Nusselt number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

a :

Distance

\(c_{\text{p}}\) :

Specific heat transfer (J kg−1 K−1)

\(C_{{f_{x} }}\) :

Skin friction coefficient

\(k\) :

Thermal conductivity (W m−1 K−1)

H :

Magnetic field (A m−1)

\(Nu_{x}\) :

Local Nusselt number

\(K^{*}\) :

Pyromagnetic coefficient

\(l\) :

Characteristic length

M :

Magnetization (A m−1)

\(\text{Re}_{x}\) :

Reynolds number

\((u,v)\) :

Velocity components (m s−1)

\((x,y)\) :

Cartesian component (m)

\(Pr\) :

Prandtl number

S :

Suction/injection parameter

\(\mu_{\text{o}}\) :

Magnetic permeability

μ :

Viscosity

T :

Fluid temperature

T c :

Curie temperature (K)

\(\nu_{\text{w}}\) :

Wall mass flux

\(\rho\) :

Density (kg m−3)

\(\rho c_{\text{p}}\) :

Heat capacity

\(\varPhi\) :

Magnetic potential

\(\psi\) :

Stream function (m2 s−1)

\(\delta\) :

Velocity slip parameter

\(\phi\) :

Volume fraction of nanoparticle

\(\varepsilon\) :

Dimensionless Curie temperature

\(\tau\) :

Shear stress

\(\lambda\) :

Viscous dissipation parameter

\(\lambda^{ * }\) :

Viscoelastic parameter

\(\alpha\) :

Thermal diffusivity

\(\alpha_{1}\) :

Dimensionless distance

\(\beta\) :

Ferromagnetic interaction parameter

\(\gamma\) :

Magnetic field strength (A m−1)

References

  1. Crane LJ (1970) Flow past a stretching plate. J Appl Math Phys (ZAMP) 21:645–647

    Article  Google Scholar 

  2. Chakrabarti A, Gupta AS (1979) Hydromagnetic flow and heat transfer over a stretching sheet. Q J Appl Math 37:73–78

    Article  MATH  Google Scholar 

  3. Chen CH (1998) Laminar mixed convection adjacent to vertical continuously stretching sheets. Heat Mass Transf 33(5–6):471–476

    Article  Google Scholar 

  4. Fan J, Shi J, Xu X (1999) Similarity solution of free convective boundary layer behaviour at a stretching surface. Heat Mass Transf 35:191–196

    Article  Google Scholar 

  5. Sajid M, Hayat T (2007) Non-similar series solution for boundary layer flow of a third-order fluid over a stretching sheet. Appl Math Comput 189:1576–1585

    MathSciNet  MATH  Google Scholar 

  6. Xu H, Liao SJ (2009) Laminar flow and heat transfer in the boundary layer of non-Newtonian fluids over a stretching flat sheet. Comput Math Appl 57:1425–1431

    Article  MathSciNet  MATH  Google Scholar 

  7. Ishak A, Jafar K, Nazar R, Pop I (2009) MHD stagnation point flow towards a stretching sheet. Phys A 388:3377–3383

    Article  Google Scholar 

  8. Ishak A, Nazar A, Pop I (2010) MHD mixed convection boundary layer flow towards a stretching surface with constant wall temperature. Int J Heat Mass Transf 53:5330–5334

    Article  MATH  Google Scholar 

  9. Salleh MZ, Nazar R, Pop I (2010) Boundary layer flow and heat transfer over a stretching sheet with Newtonian heating. J Taiwan Inst Chem Eng 41:651–655

    Article  Google Scholar 

  10. Ali FM, Nazar R, Arifin NM, Pop I (2011) MHD boundary layer flow and heat transfer over a stretching sheet with induced magnetic field. Heat Mass Transf 47:155–162

    Article  MATH  Google Scholar 

  11. Rashidi MM, Ferdows M, Parsa AB, Abelman S (2014) MHD natural convection with convective surface boundary condition over a flat plate. Abstr Appl Anal 2014:1–10

  12. Rajagopal KR, Na TY, Gupta AS (1984) Flow of a viscoelastic fluid over a stretching sheet. Rheol Acta 23(2):213–215

    Article  Google Scholar 

  13. Rashidi MM, Momoniat E, Rostami B (2012) Analytic approximate solutions for MHD boundary-layer viscoelastic fluid flow over continuously moving stretching surface by Homotopy Analysis Method with two auxiliary parameters. J Appl Math 2012:1–9

  14. Andersson HI (1992) MHD flow of viscoelastic fluid past a stretching surface. Acta Mech 95:227–230

    Article  MathSciNet  MATH  Google Scholar 

  15. Rashidi MM, Ali M, Freidoonimehr N, Rostami B, Hossain MA (2014) Mixed convective heat transfer for MHD viscoelastic fluid flow over a porous wedge with thermal radiation. Adv Mech Eng 6:735939

    Article  Google Scholar 

  16. Abel MS, Joshi A, Sonth RM (2001) Heat transfer in MHD visco-elastic fluid flow over a stretching surface. J Appl Math Mech 81:691–698

    MATH  Google Scholar 

  17. Cortell R (2006) A note on flow and heat transfer of a viscoelastic fluid over a stretching sheet. Int J Non-Linear Mech 41:78–85

    Article  MATH  Google Scholar 

  18. Rashidi S, Abolfazli Esfahani J, Valipour MS, Bovand M, Pop I (2016) Magnetohydrodynamic effects on flow structures and heat transfer over two cylinders wrapped with a porous layer in side. Int J Numer Methods Heat Fluid Flow 26(5):1416–1432

  19. Ellahi R, Hassan M, Zeeshan A (2015) Study of natural convection MHD nanofluid by means of single and multi-walled carbon nanotubes suspended in a salt-water solution. IEEE Trans Nanotechnol 14(4):726–734

    Article  Google Scholar 

  20. Zeeshan A, Majeed A (2016) Heat transfer analysis of Jeffery fluid flow over a stretching sheet with suction/injection and magnetic dipole effect. Alexandria Eng J 55(3):2171–2181

    Article  Google Scholar 

  21. Jafari A, Tynjala T, Mousavi S, Sarkomaa P (2008) CFD simulation and evaluation of controllable parameters effect on thermomagnetic convection in ferrofluids using Taguchi technique. Comput Fluids 37:1344–1353

    Article  MATH  Google Scholar 

  22. Selimefendigil F, Oztop HF (2015) Numerical study and pod-based prediction of natural convection in ferrofluids filled triangular cavity with generalized neural networks. Numer Heat Transf Part A 67(10):1136–1161

    Article  Google Scholar 

  23. Bissell P, Bates P, Chantrell R, Raj K, Wyman J (1983) Cavity magnetic field measurements in ferrofluids. J Magn Magn Mater 39:27–29

    Article  Google Scholar 

  24. Vales-Pinzon C, Alvarado-Gil J, Medina-Esquivel R, Martinez-Torres P (2014) Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field. J Magn Magn Mater 369:114–121

    Article  Google Scholar 

  25. Yellen BB, Friedman G (2004) Ferrofluid lithography. Nanotechnology 15:S562

    Article  Google Scholar 

  26. Li Q, Xuan Y (2009) Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field. Exp Therm Fluid 33:91–596

    Google Scholar 

  27. Sheikholeslami M, Ganji DD (2014) Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer. Energy 75:400–410

    Article  Google Scholar 

  28. Kefayati G (2014) Natural convection of ferrofluid in a linearly heated cavity utilizing LBM. J Mol Liq 191:1–9

    Article  Google Scholar 

  29. Sheikholeslami M, Rashidi MM, Ganji D (2015) Effect of non-uniform magnetic field on forced convection heat transfer of–water nanofluid. Comput Methods Appl Mech Eng 294:299–312

    Article  Google Scholar 

  30. Bovand M, Rashidi S, Esfahani JA, Saha SC, Gu YT, Dehesht M (2016) Control of flow around a circular cylinder wrapped with a porous layer by magnetohydrodynamic. J Magn Magn Mater 401:1078–1087

    Article  Google Scholar 

  31. Rashidi S, Bovand M, Esfahani JA (2016) Opposition of magnetohydrodynamic and Al2O3–water nanofluid flow around a vertex facing triangular obstacle. J Mol Liq 215:276–284

    Article  Google Scholar 

  32. Bovand M, Rashidi S, Esfahani JA, Masoodi R (2016) Control of wake destructive behavior for different bluff bodies in channel flow by magnetohydrodynamics. Eur Phys J Plus 131(6):1–13

    Article  Google Scholar 

  33. Bovand M, Rashidi S, Esfahani JA (2016) Optimum interaction between magnetohydrodynamics and nanofluid for thermal and drag management. J Thermophys Heat Trans 1–12

  34. Sheikholeslami M, Ganji DD, Rashidi MM (2015) Ferrofluid flow and heat transfer in semi annulus enclosure in the presence of magnetic source considering thermal radiation. J Taiwan Inst Chem Eng 47:6–17

    Article  Google Scholar 

  35. Andersson HI, Valnes OA (1998) Flow of a heated Ferrofluid over a stretching sheet in the presence of a magnetic dipole. Acta Mech 128:39–47

    Article  MATH  Google Scholar 

Download references

Acknowledgements

R. Ellahi is grateful to Prof. Sultan Z Alamri, Dean Faculty of Science and Prof. Yousef Alharbi, Chairman Mathematics Department, Taibah University, Madinah Munawwarah, Saudi Arabia, for their kind cooperation. R. Ellahi is also thankful to PCST to honour him with 7th top most Productive Scientist Award in category A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahmat Ellahi.

Ethics declarations

Conflict of interest

The authors have declared that they have no actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majeed, A., Zeeshan, A., Alamri, S.Z. et al. Heat transfer analysis in ferromagnetic viscoelastic fluid flow over a stretching sheet with suction. Neural Comput & Applic 30, 1947–1955 (2018). https://doi.org/10.1007/s00521-016-2830-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2830-6

Keywords

Navigation