Skip to main content
Log in

Salient object detection using a covariance-based CNN model in low-contrast images

  • New Trends in data pre-processing methods for signal and image classification
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Salient object detection model with active environment perception can substantially facilitate a wide range of applications. Conventional models primarily rely on handcrafted low-level image features or high-level features. However, these models may face great challenges in low-lighting scenario, due to the lack of well-defined features to represent saliency information in low-contrast images. In this paper, we propose a novel deep neural network framework embedded with covariance descriptor for salient object detection in low-contrast images. Several low-level features are extracted to compute their mutual covariance, which is then trained via a 7-layer convolutional neural network (CNN). The saliency map can be generated by estimating the saliency score of each region via the pre-trained CNN model. Extensive experiments have been conducted on six challenging datasets to evaluate the performance of the proposed model against ten state-of-the-art models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cheng MM, Mitra NJ, Huang XL, Torr P, Hu SM (2011) Salient object detection and segmentation. IEEE Trans Pattern Anal Mach Intell 37(3):569–582

    Article  Google Scholar 

  2. Zheng Y, Jeon B, Xu D, Jonathan Wu QM, Zhang H (2015) Image segmentation by generalized hierarchical fuzzy C-means algorithm. J Intell Fuzzy Syst 28(2):961–973

    Google Scholar 

  3. Li J, Li X, Yang B, Sun X (2015) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inf Forensics Secur 10(3):507–518

    Article  Google Scholar 

  4. Gupta R, Khanna MT, Chaudhury S (2013) Visual saliency guided video compression algorithm. Sig Process Image Commun 28(9):1006–1022

    Article  Google Scholar 

  5. Pan Z, Lei J, Zhang Y, Sun X, Kwong S (2016) Fast motion estimation based on content property for low-complexity H.265/HEVC encoder. IEEE Trans Broadcast 62(3):675–684

    Article  Google Scholar 

  6. Xia Z, Wang X, Zhang L, Qin Z, Sun X, Ren K (2016) A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Trans Inf Forensics Secur 11(11):2594–2608

    Article  Google Scholar 

  7. Pan Z, Zhang Y, Kwong S (2015) Efficient motion and disparity estimation optimization for low complexity multiview video coding. IEEE Trans Broadcast 61(2):166–176

    Article  Google Scholar 

  8. Zhang Y, Zhang F, Guo L (2016) Saliency detection by selective color features. Neurocomputing 203:34–40

    Article  Google Scholar 

  9. Huo L, Jiao L, Wang S, Yang S (2016) Object-level saliency detection with color attributes. Pattern Recogn 49:162–173

    Article  Google Scholar 

  10. Qi S, Yu J-G, Ma J, Li Y, Tian J (2015) Salient object detection via contrast information and object vision organization cues. Neurocomputing 167:390–405

    Article  Google Scholar 

  11. Adu J, Xie S, Gan J (2016) Image fusion based on visual salient features and the cross-contrast. J Vis Commun Image Represent 40:218–224

    Article  Google Scholar 

  12. Xu X, Mu N, Chen L, Zhang X (2016) Hierarchical salient object detection model using contrast based saliency and color spatial distribution. Multimed Tools Appl 75(5):2667–2679

    Article  Google Scholar 

  13. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks, In: Advances in neural information processing systems, pp 1097–1105

  14. Farabet C, Couprie C, Najman L, LeCun Y (2013) Learning hierarchical features for scene labeling. IEEE Trans Pattern Anal Mach Intell 35(8):1915–1929

    Article  Google Scholar 

  15. Wen X, Shao L, Xue Y, Fang W (2015) A rapid learning algorithm for vehicle classification. Inf Sci 295(1):395–406

    Article  Google Scholar 

  16. He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification, In: Proceedings of IEEE international conference on computer vision, pp 1026–1034

  17. Xu X, Mu N, Zhang X, Zhang H (2016) Covariance descriptor based convolution neural network for saliency computation in low contrast images, In: Proceedings of international joint conference on neural networks, pp 616–623

  18. Liu T, Sun J, Zheng N-N, Tang X, Shum H-Y (2007) Learning to detect a salient object, In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1–8

  19. Movahedi V, Elder JH (2010) Design and perceptual validation of performance measures for salient object segmentation. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition workshops, pp 49–56

  20. Yan Q, Xu L, Shi J, Jia J (2013) Hierarchical saliency detection, In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1155–1162

  21. Yang C, Zhang L, Lu H, Ruan X, Yang M-H (2013) Saliency detection via graph-based manifold ranking, In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 3166–3137

  22. Li Y, Hou X, Koch C, Rehg J, Yuille A (2014) The secrets of salient object segmentation, In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 280–287

  23. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259

    Article  Google Scholar 

  24. Achanta R, Estrada F, Wils P, Susstrunk S (2008) Salient region detection and segmentation, In: Proceedings of international conference on computer vision systems, pp 66–75

  25. Zhou Z, Wang Y, Jonathan Wu QM, Yang C, Sun X (2017) Effective and efficient global context verification for image copy detection. IEEE Trans Inf Forensics Secur 12(1):48–63

    Article  Google Scholar 

  26. Zhang J, Wang M, Zhang S, Li X, Wu X (2016) Spatiochromatic context modeling for color saliency analysis. IEEE Trans Neural Netw Learn Syst 27(6):1177–1189

    Article  MathSciNet  Google Scholar 

  27. Goferman S, Zelnik-Manor L, Tal A (2012) Context-aware saliency detection. IEEE Trans Pattern Anal Mach Intell 34(10):1915–1926

    Article  Google Scholar 

  28. Cheng M, Mitra NJ, Huang X, Torr PHS, Hu S (2015) Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell 37(3):569–582

    Article  Google Scholar 

  29. Xu L, Zeng L, Duan H (2015) An effective vector model for global-contrast-based saliency detection. J Vis Commun Image Represent 30:64–74

    Article  Google Scholar 

  30. Lang C, Liu G, Yu J, Yan S (2012) Saliency detection by multitask sparsity pursuit. IEEE Trans Image Process 21(3):1327–1338

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang J, Yang M-H (2012) Top–down visual saliency via joint CRF and dictionary learning, In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 2296–2303

  32. Cholakkal H, Johnson J, Rajan D (2016) A classifier-guided approach for top–down salient object detection. Sig Process Image Commun 45:24–40

    Article  Google Scholar 

  33. Zhao R, Ouyang W, Li H, Wang X (2015) Saliency detection by multi-context deep learning. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1265–1274

  34. Li G, Yu Y (2015) Visual saliency based on multiscale deep features, In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 5455–5463

  35. Li G, Yu Y (2016) Deep contrast learning for salient object detection. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 478–487

  36. Pan J, Sayrol E, Giro-i-Nieto X, McGuinness K, O’Connor NE (2016) Shallow and deep convolutional networks for saliency prediction. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 598–606

  37. Lee G, Tai Y-W, Kim J (2016) Deep saliency with encoded low level distance map and high level features. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 660–668

  38. Liu N, Han J (2016) DHSNet: deep hierarchical saliency network for salient object detection. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 678–686

  39. Kuen J, Wang Z, Wang G (2016) Recurrent attentional networks for saliency detection. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 3668–3677

  40. Xia Z, Wang X, Sun X, Liu Q, Xiong N (2016) Steganalysis of LSB matching using differences between nonadjacent pixels. Multimed Tools Appl 75(4):1947–1962

    Article  Google Scholar 

  41. Xia Z, Wang X, Sun X, Wang B (2014) Steganalysis of least significant bit matching using multi-order differences. Secur Commun Netw 7(8):1283–1291

    Article  Google Scholar 

  42. Xu X, Mu N, Zhang H, Fu X (2015) Salient object detection from distinctive features in low contrast images. In: Proceedings of IEEE international conference on image processing, pp 3126–3130

  43. Gu B, Sheng VS, Wang Z, Ho D, Osman S, Li S (2015) Incremental learning for ν-support vector regression. Neural Netw 67:140–150

    Article  Google Scholar 

  44. Gu B, Sheng VS (2016) A robust regularization path algorithm for ν-support vector classification. IEEE transactions on neural networks and learning systems. doi:10.1109/TNNLS.2016.2527796

  45. Yuan C, Sun X, Lv R (2016) Fingerprint liveness detection based on multi-scale LPQ and PCA. China Commun 13(7):60–65

    Article  Google Scholar 

  46. Simoncelli EP, Freeman WT (1995) The steerable pyramid: a flexible architecture for multi-scale derivative computation. In: Proceedings of IEEE international conference on image processing, pp 444–447

  47. Daugman JG (1988) Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression. IEEE Trans Acoust Speech Signal Process 36(7):1169–1179

    Article  MATH  Google Scholar 

  48. Tuzel O, Porikli F, Meer P (2006) Region covariance: a fast descriptor for detection and classification. In: Proceedings of 9th European conference on computer vision, pp 589–600

  49. Palm RB (2012) Prediction as a candidate for learning deep hierarchical models of data. Master’s thesis, Technical University of Denmark

  50. Murray N, Vanrell M, Otazu X, Parraga CA (2011) Saliency estimation using a non-parametric low-level vision model. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 433–440

  51. Hou X, Harel J, Koch C (2012) Image signature: highlighting sparse salient regions. IEEE Trans Pattern Anal Mach Intell 34(1):194–201

    Article  Google Scholar 

  52. Shen X, Wu Y (2012) A unified approach to salient object detection via low rank matrix recovery. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 853–860

  53. Margolin R, Tal A, Zelnik-Manor L (2013) What makes a patch distinct? In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1139–1146

  54. Zhu W, Liang S, Wei Y, Sun J (2014) Saliency optimization from robust background detection. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 2814–2821

  55. Tong N, Lu H, Yang M (2015) Salient object detection via bootstrap learning. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1884–1892

  56. Qin Y, Lu H, Xu Y, Wang H (2015) Saliency detection via cellular automata. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 110–119

  57. Tong N, Lu H, Zhang Y, Ruan X (2015) Salient object detection via global and local cues. Pattern Recogn 48(10):3258–3267

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (61602349, 61373109, and 61273225) and the China Scholarship Council (201508420248).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Xu.

Ethics declarations

Conflict of interest

No conflict of interest exits in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, N., Xu, X., Zhang, X. et al. Salient object detection using a covariance-based CNN model in low-contrast images. Neural Comput & Applic 29, 181–192 (2018). https://doi.org/10.1007/s00521-017-2870-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-2870-6

Keywords

Navigation