Skip to main content
Log in

Parameter estimation for chaotic systems via a hybrid flower pollination algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Parameter estimation is a fundamental research issue which has attracted great concern in the control and synchronization of chaotic systems. This problem can be mathematically described as a multi-dimensional continuous optimization problem through constructing an appropriate fitness function, and then solved via meta-heuristic algorithms. A hybrid flower pollination algorithm is proposed in this paper for solving this problem more efficiently. The proposed algorithm well combines the good global exploration ability of the original flower pollination algorithm and the powerful local exploitation ability of the Nelder–Mead simplex method together by integrating these two methods in a very simple way. The experimental results tested on three typical chaotic system parameter estimation problems with three unknown system parameters, including the Lorenz system, the Rossler system, and the Lorenz system under the noise condition, demonstrate that the algorithm can estimate the unknown parameters efficiently and accurately. The comparisons with the basic flower pollination algorithm and some other four reported methods including the quantum particle swarm optimization, the hybrid adaptive cuckoo search optimization algorithm, the oppositional backtracking search optimization algorithm, and the hybrid algorithm combining differential evolution with artificial bee colony suggest that the proposed algorithm is energy efficient and superior. The proposed algorithm can be used as a new and effective choice for parameter estimation of chaotic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang L, Li LP (2010) An effective hybrid quantum-inspired evolutionary algorithm for parameter estimation of chaotic systems. Expert Syst Appl 37(2):1279–1285

    Article  Google Scholar 

  2. Li X, Yin M (2014) Parameter estimation for chaotic systems by hybrid differential evolution algorithm and artificial bee colony algorithm. Nonlinear Dyn 77:1–11

    Article  MathSciNet  Google Scholar 

  3. Sun J, Zhao J, Wu X, Fang W, Cai Y, Xu W (2010) Parameter estimation for chaotic systems with a Drift Particle Swarm Optimization method. Phys Lett A 374(28):2816–2822

    Article  Google Scholar 

  4. Wang L, Xu Y (2011) An effective hybrid biogeography-based optimization algorithm for parameter estimation of chaotic systems. Expert Syst Appl 38(12):15103–15109

    Article  Google Scholar 

  5. Lazzús JA, Rivera M, López-Caraballo CH (2016) Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm. Phys Lett A 380(11):1164–1171

    Article  MathSciNet  Google Scholar 

  6. Mariño IP, Míguez J (2006) An approximate gradient-descent method for joint parameter estimation and synchronization of coupled chaotic systems. Phys Lett A 351(4–5):262–267

    Article  Google Scholar 

  7. Dai D, Ma X-K, Li F-C, You Y (2002) An approach of parameter estimation for a chaotic system based on genetic algorithm. Acta Phys Sin-Chin Ed 51(11):2459–2462

    Google Scholar 

  8. He Q, Wang L, Liu B (2007) Parameter estimation for chaotic systems by particle swarm optimization. Chaos Soliton Fractals 34(2):654–661

    Article  Google Scholar 

  9. Alfi A (2012) Particle swarm optimization algorithm with Dynamic Inertia Weight for online parameter identification applied to Lorenz chaotic system. Int J Innov Comput Inf Control 8(2):1191–1203

    Google Scholar 

  10. Peng B, Liu B, Zhang FY, Wang L (2009) Differential evolution algorithm-based parameter estimation for chaotic systems. Chaos Soliton Fractals 39(5):2110–2118

    Article  Google Scholar 

  11. Lin J, Xu L (2013) Parameter estimation for chaotic systems based on hybrid biogeography-based optimization. Acta Phys Sin-Chin Ed 62(3):221–229

    Google Scholar 

  12. Lin J (2014) Parameter estimation for time-delay chaotic systems by hybrid biogeography-based optimization. Nonlinear Dyn 77(3):983–992

    Article  Google Scholar 

  13. Li X, Yin M (2012) Parameter estimation for chaotic systems using the cuckoo search algorithm with an orthogonal learning method. Chin Phys B 21(5):113–118

    Google Scholar 

  14. Wang J, Zhou B (2016) A hybrid adaptive cuckoo search optimization algorithm for the problem of chaotic systems parameter estimation. Neural Comput Appl 27(6):1511–1517. doi:10.1007/s00521-015-1949-1

    Article  Google Scholar 

  15. Ahmadi M, Mojallali H (2012) Chaotic invasive weed optimization algorithm with application to parameter estimation of chaotic systems. Chaos Soliton Fractals 45(9–10):1108–1120

    Article  MathSciNet  Google Scholar 

  16. Gu W, Yu Y, Hu W (2016) Parameter estimation of unknown fractional-order memristor-based chaotic systems by a hybrid artificial bee colony algorithm combined with differential evolution. Nonlinear Dyn 84(2):779–795

    Article  MathSciNet  Google Scholar 

  17. Zhang H, Li B, Zhang J, Qin Y, Feng X, Liu B (2016) Parameter estimation of nonlinear chaotic system by improved TLBO strategy. Soft Comput 20(12):4965–4980

    Article  Google Scholar 

  18. Yang X-S (2012) Flower pollination algorithm for global optimization. In: Durand-Lose J, Jonoska N (eds) Unconventional computation and natural computation, vol 7445. Lecture notes in computer science. Springer, Berlin, pp 240–249. doi:10.1007/978-3-642-32894-7_27

    Chapter  Google Scholar 

  19. Yang X-S, Karamanoglu M, He X (2013) Flower pollination algorithm: a novel approach for multiobjective optimization. Eng Optim 46(9):1222–1237. doi:10.1080/0305215X.2013.832237

    Article  MathSciNet  Google Scholar 

  20. Bekdaş G, Nigdeli SM, Yang XS (2015) Sizing optimization of truss structures using flower pollination algorithm. Appl Soft Comput 37(C):322–331

    Article  Google Scholar 

  21. Alam DF, Yousri DA, Eteiba MB (2015) Flower pollination algorithm based solar PV parameter estimation. Energy Convers Manag 101:410–422

    Article  Google Scholar 

  22. Jagatheesan K, Anand B, Samanta S, Dey N, Santhi V, Ashour AS, Balas VE (2016) Application of flower pollination algorithm in load frequency control of multi-area interconnected power system with nonlinearity. Neural Comput Appl. doi:10.1007/s00521-016-2361-1

    Article  Google Scholar 

  23. Abdelaziz AY, Ali ES, Abd Elazim SM (2016) Combined economic and emission dispatch solution using Flower Pollination Algorithm. Int J Electr Power 80:264–274. doi:10.1016/j.ijepes.2015.11.093

    Article  Google Scholar 

  24. Abdelaziz AY, Ali ES, Abd Elazim SM (2016) Implementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systems. Energy 101:506–518. doi:10.1016/j.energy.2016.02.041

    Article  Google Scholar 

  25. Chiroma H, Khan A, Abubakar AI, Saadi Y, Hamza MF, Shuib L, Gital AY, Herawan T (2016) A new approach for forecasting OPEC petroleum consumption based on neural network train by using flower pollination algorithm. Appl Soft Comput 48:50–58

    Article  Google Scholar 

  26. Dash P, Saikia LC, Sinha N (2016) Flower pollination algorithm optimized PI-PD cascade controller in automatic generation control of a multi-area power system. Int J Electr Power 82:19–28

    Article  Google Scholar 

  27. Wang R, Zhou Y, Qiao S, Huang K (2016) Flower pollination algorithm with bee pollinator for cluster analysis. Inf Process Lett 116(1):1–14

    Article  Google Scholar 

  28. Nabil E (2016) A modified flower pollination algorithm for global optimization. Expert Syst Appl 57:192–203

    Article  Google Scholar 

  29. Zhou Y, Wang R (2016) An improved flower pollination algorithm for optimal unmanned undersea vehicle path planning problem. Int J Patt Recogn Artif Intell 30(4):1659010(1–27)

    Article  Google Scholar 

  30. Dubey H, Pandit M, Panigrahi BK (2015) A biologically inspired modified flower pollination algorithm for solving economic dispatch problems in modern power systems. Cognit Comput. doi:10.1007/s12559-015-9324-1

    Article  Google Scholar 

  31. Dubey HM, Pandit M, Panigrahi BK (2015) Hybrid flower pollination algorithm with time-varying fuzzy selection mechanism for wind integrated multi-objective dynamic economic dispatch. Renew Energy 83:188–202. doi:10.1016/j.renene.2015.04.034

    Article  Google Scholar 

  32. Xu S, Wang Y, Huang F (2016) Optimization of multi-pass turning parameters through an improved flower pollination algorithm. Int J Adv Manuf Technol. doi:10.1007/s00170-016-9112-4

    Article  Google Scholar 

  33. Mahdad B, Srairi K (2016) Security constrained optimal power flow solution using new adaptive partitioning flower pollination algorithm. Appl Soft Comput 46:501–522. doi:10.1016/j.asoc.2016.05.027

    Article  Google Scholar 

  34. Rodrigues D, Silva GFA, Papa JP, Marana AN, Yang XS (2016) EEG-based person identification through binary flower pollination algorithm. Expert Syst Appl 62:81–90

    Article  Google Scholar 

  35. Sayed AEF, Nabil E, Badr A (2016) A binary clonal flower pollination algorithm for feature selection. Pattern Recognit Lett 77:21–27

    Article  Google Scholar 

  36. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313

    Article  MathSciNet  Google Scholar 

  37. Olsson DM, Nelson LS (1975) The Nelder–Mead simplex procedure for function minimization. Technometrics 17(1):45–51

    Article  Google Scholar 

  38. Fan S-KS, Zahara E (2007) A hybrid simplex search and particle swarm optimization for unconstrained optimization. Eur J Oper Res 181(2):527–548

    Article  MathSciNet  Google Scholar 

  39. Maehara N, Shimoda Y (2013) Application of the genetic algorithm and downhill simplex methods (Nelder–Mead methods) in the search for the optimum chiller configuration. Appl Therm Eng 61(2):433–442

    Article  Google Scholar 

  40. Sharma N, Arun N, Ravi V (2013) An ant colony optimisation and Nelder–Mead simplex hybrid algorithm for training neural networks: an application to bankruptcy prediction in banks. IJIDS 5(2):188–203

    Article  Google Scholar 

  41. Kanagaraj G, Ponnambalam SG (2014) An effective hybrid cuckoo search and genetic algorithm for constrained engineering design optimization. Eng Optim 46(10):1331–1351

    Article  MathSciNet  Google Scholar 

  42. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20(2):130–141

    Article  Google Scholar 

  43. Rössler OE (1976) An equation for continuous chaos. Phys Lett A 57(5):397–398

    Article  Google Scholar 

  44. Zhang HL, Song LL (2013) Parameter identification in chaotic systems by means of quantum particle swarm optimization. Acta Phys Sin-Chin Ed 62(19):750–754

    Google Scholar 

  45. Lin J (2015) Oppositional backtracking search optimization algorithm for parameter identification of hyperchaotic systems. Nonlinear Dyn 80(1–2):209–219

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the anonymous reviewers for their constructive comments which improved the quality of this manuscript and acknowledge the supports provided by the National Natural Science Foundation of China (Grant No. 51475270).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Wang, Y. & Liu, X. Parameter estimation for chaotic systems via a hybrid flower pollination algorithm. Neural Comput & Applic 30, 2607–2623 (2018). https://doi.org/10.1007/s00521-017-2890-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-2890-2

Keywords

Navigation