Skip to main content
Log in

Novel applications of m-polar fuzzy competition graphs in decision support system

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

An m-polar fuzzy model is useful for multipolar information, multi-agent, multi-attribute and multi-object network models. In this research paper, the concept of m-polar fuzzy competition graphs is introduced and some related properties of m-polar open neighbourhood graphs, m-polar fuzzy closed neighbourhood graphs, m-polar fuzzy k-competition graphs and underlying m-polar fuzzy graphs are investigated. Some interesting applications of m-polar fuzzy competition graphs in different fields including business marketing, politics, network communication and social networks are described. Certain algorithms for computing strength of competition in each application are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Al-Hawary T (2011) Complete fuzzy graphs. Int J Math Comb 4:26–34

    MATH  Google Scholar 

  2. Al-Shehri NO, Akram M (2015) Bipolar fuzzy competition graphs. Ars Comb 121:385–402

    MathSciNet  MATH  Google Scholar 

  3. Akram M (2011) Bipolar fuzzy graphs. Inf Sci 181(24):5548–5564

    Article  MathSciNet  Google Scholar 

  4. Akram M, Waseem N (2016) Certain metrices in \(m\)-polar fuzzy graphs. N Math Nat Comput 12(2):135–155

    Article  Google Scholar 

  5. Akram M, Sarwar M (2016) Novel applications of \(m\)-polar fuzzy hypergraphs. J Intell Fuzzy Syst. doi:10.3233/JIFS-16859

    Article  MATH  Google Scholar 

  6. Akram M, Adeel A (2016) \(m\)-polar fuzzy labeling graphs with application. Math Comput Sci 10:387–402

    Article  MathSciNet  Google Scholar 

  7. Akram M, Younas HR (2016) Certain types of irregular m-polar fuzzy graphs. J Appl Math Comput. doi:10.1007/s12190-015-0972-9

    Article  MATH  Google Scholar 

  8. Bhattacharya P (1987) Some remarks on fuzzy graphs. Pattern Recogn Lett 6(5):297–302

    Article  Google Scholar 

  9. Bhutani KR, Rosenfeld A (2003) Strong arcs in fuzzy graphs. Inf Sci 152:319–322

    Article  MathSciNet  Google Scholar 

  10. Butt A, Akram M (2016) A novel fuzzy decision-making system for CPU scheduling algorithm. Neural Comput Appl 27:1927–1939

    Article  Google Scholar 

  11. Chen J, Li S, Ma S, Wang X (2014) \(m\)-polar fuzzy sets: an extension of bipolar fuzzy sets. The Scientific World Journal 2014 Article ID 416530

  12. Cohen JE (1968) Interval graphs and food webs: a finding and a problem, Document 17696-PR. RAND Coporation, Santa Monica

    Google Scholar 

  13. Deli I, Eraslan S, Cagman N (2016) ivnpiv-Neutrosophic soft sets and their decision making based on similarity measure. Neural Comput Appl. doi:10.1007/s00521-016-2428-z

    Article  Google Scholar 

  14. Djouadi Y, Prade H (2009) Interval-valued fuzzy formal concept analysis. In: International symposium on methodologies for intelligent systems. Springer, Berlin Heidelberg, pp 592-601

    Google Scholar 

  15. Harary F (1972) Graph theory. Addison-Wesley, Boston

    MATH  Google Scholar 

  16. Hsu W (2015) A fuzzy multiple criteria decision making system for analyzin gaps of service quality. Int J Fuzzy Syst 17(2):256–267

    Article  Google Scholar 

  17. Kaufmann A (1975) Introduction la thorie des sous-ensembles flous lusage des ingnieurs (fuzzy sets theory). Masson, Paris

    Google Scholar 

  18. Kumar ChA (2012) Fuzzy clustering-based formal concept analysis for association rules mining. Appl Artif Intell 26(3):274–301

    Article  Google Scholar 

  19. Kumar ChA, Srinivas S (2010) Concept lattice reduction using fuzzy K-means clustering. Exp Syst Appl 37(3):2696–2704

    Article  Google Scholar 

  20. Mordeson JN, Chang-Shyh P (1994) Operations on fuzzy graphs. Inf Sci 79(3):159–170

    Article  MathSciNet  Google Scholar 

  21. Mordeson JN, Nair PS (1998) Fuzzy graphs and fuzzy hypergraphs. Physica, Heidelberg Second Edition 2001

    MATH  Google Scholar 

  22. Mathew S, Sunitha M (2009) Types of arcs in a fuzzy graph. Inf Sci 179(11):1760–1768

    Article  MathSciNet  Google Scholar 

  23. Pramanik T, Samanta S, Sarkar B, Pal M (2016) Fuzzy \(\phi \)-tolerance competition graphs. Soft Comput. doi:10.1007/s00500-015-2026-5

    Article  MATH  Google Scholar 

  24. Pramanik T, Samanta S, Pal M, Mondal S, Sarkar B (2016) Interval-valued fuzzy phi-tolerance competition graphs. SpringerPlus 5(1):1981

    Article  Google Scholar 

  25. Rosenfeld A (1975) Fuzzy Sets and their Applications. In: Zadeh LA, Fu KS, Shimura M (eds), Academic, New York, pp 77–95

  26. Samanta S, Pal M (2013) Fuzzy \(k-\)competition and \(p-\)competition graphs. Fuzzy Inf Eng 2:191–204

    Article  MathSciNet  Google Scholar 

  27. Samanta S, Sarkar B, Shin D, Pal M (2016) Completeness and regularity of generalized fuzzy graphs. SpringerPlus 5(1):1979

    Article  Google Scholar 

  28. Singh PK, Kumar ChA (2014) Bipolar fuzzy graph representation of concept lattice. Inf Sci 288:437–448

    Article  MathSciNet  Google Scholar 

  29. Sarwar M, Akram M (2016) Novel concepts bipolar fuzzy competition graphs. J Appl Math Comput. doi:10.1007/s12190-016-1021-z

    Article  MATH  Google Scholar 

  30. Wang J, Wanf J-Q, Zhang HY, Chen X-H (2016) Multi-criteria group decision-making approach based on 2-tuple linguistic aggregation operators with multi-hesitant fuzzy linguistic information. Int J Fuzzy Syst 18:81–97

    Article  MathSciNet  Google Scholar 

  31. Yang HL, Li SG, Yang WH, Lu Y (2013) Notes on bipolar fuzzy graphs. Inf Sci 242:113–121

    Article  MathSciNet  Google Scholar 

  32. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  Google Scholar 

  33. Zadeh LA (1971) Similarity relations and fuzzy orderings. Inf Sci 3(2):177–200

    Article  MathSciNet  Google Scholar 

  34. Zhang W -R (1994) Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision analysis. In Proceeding of IEEE conference on fuzzy information processing society biannual conference, pp 305–309

Download references

Acknowledgements

The authors are thankful to Editor-in-Chief, Professor John MacIntyre, and the referees for their invaluable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Akram.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest regarding the publication of this research paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, M., Sarwar, M. Novel applications of m-polar fuzzy competition graphs in decision support system. Neural Comput & Applic 30, 3145–3165 (2018). https://doi.org/10.1007/s00521-017-2894-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-2894-y

Keywords

Navigation