Skip to main content
Log in

Coupling of optimal variation of parameters method with Adomian’s polynomials for nonlinear equations representing fluid flow in different geometries

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this study, we describe a modified analytical algorithm for the resolution of nonlinear differential equations by the variation of parameters method (VPM). Our approach, including auxiliary parameter and auxiliary linear differential operator, provides a computational advantage for the convergence of approximate solutions for nonlinear boundary value problems. We consume all of the boundary conditions to establish an integral equation before constructing an iterative algorithm to compute the solution components for an approximate solution. Thus, we establish a modified iterative algorithm for computing successive solution components that does not contain undetermined coefficients, whereas most previous iterative algorithm does incorporate undetermined coefficients. The present algorithm also avoid to compute the multiple roots of nonlinear algebraic equations for undetermined coefficients, whereas VPM required to complete calculation of solution by computing roots of undetermined coefficients. Furthermore, a simple way is considered for obtaining an optimal value of an auxiliary parameter via minimizing the residual error over the domain of problem. Graphical and numerical results reconfirm the accuracy and efficiency of developed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Majeed A, Zeeshan A, Alamri SZ, Ellahi R (2016) Heat transfer analysis in ferromagnetic viscoelastic fluid flow over a stretching sheet with suction. Neural Comput Appl. doi:10.1007/s00521-016-2830-6

    Article  Google Scholar 

  2. Ellahi R, Shivanian E, Abbasbandy S, Hayat T (2016) Numerical study of magnetohydrodynamics generalized Couette flow of Eyring–Powell fluid with heat transfer and slip condition. Int J Numer Methods Heat Fluid Flow 26(5):1433–1445

    Article  MathSciNet  Google Scholar 

  3. Maqbool K, Sohail A, Manzoor N, Ellahi R (2016) Hall effect on Falkner–Skan boundary layer flow of FENE-P fluid over a stretching sheet. Commun Theor Phys 66(5):547–554

    Article  MathSciNet  Google Scholar 

  4. Aaiza G, Khan I, Shafie S (2015) Energy transfer in mixed convection MHD flow of nanofluid containing different shapes of nanoparticles in a channel filled with saturated porous medium. Nanoscale Res Lett. doi:10.1186/s11671-015-1144-4

    Article  Google Scholar 

  5. Aman S, Khan I, Ismail Z, Salleh MZ (2016) Impacts of gold nanoparticles on MHD mixed convection Poiseuille flow of nanofluid passing through a porous medium in the presence of thermal radiation, thermal diffusion and chemical reaction. Neural Comput Appl. doi:10.1007/s00521-016-2688-7

    Article  Google Scholar 

  6. Khalid A, Khan I, Shafie S (2016) Heat transfer in ferrofluid with cylindrical shape nanoparticles past a vertical plate with ramped wall temperature embedded in a porous medium. J Mol Liq 221:1175–1183

    Article  Google Scholar 

  7. Mamourian M, Shirvan KM, Ellahi R (2016) Optimization of mixed convection heat transfer with entropy generation in a wavy surface square lid-driven cavity by means of Taguchi approach. Int J Heat Mass Transf 120:544–554

    Article  Google Scholar 

  8. Shehzad N, Zeeshan A, Ellahi R, Vafai K (2016) Convective heat transfer of nanofluid in a wavy channel: Buongiorno’s mathematical model. J Mol Liq 222:446–455

    Article  Google Scholar 

  9. Shirvan KM, Ellahi R, Mirzakhanlari S, Mamourian M (2016) Enhancement of heat transfer and heat exchanger effectiveness in a double pipe heat exchanger filled with porous media: numerical simulation and sensitivity analysis of turbulent fluid flow. Appl Therm Eng 109:761–774

    Article  Google Scholar 

  10. Gul A, Khan I, Shafie S, Khalid A, Khan A (2015) Heat transfer in MHD mixed convection flow of a ferrofluid along a vertical channel. PLoS ONE 11(10):1–14

    Google Scholar 

  11. Zin NAM, Khan I, Shafie S (2016) The impact silver nanoparticles on MHD free convection flow of Jeffrey fluid over an oscillating vertical plate embedded in a porous medium. J Mol Liq 222:138–150

    Article  Google Scholar 

  12. Ali F, Gohar M, Khan I (2016) MHD flow of water-based Brinkman type nanofluid over a vertical plate embedded in a porous medium with variable surface velocity, temperature and concentration. J Mol Liq 223:412–419

    Article  Google Scholar 

  13. Sheikholeslami M, Rokni HB (2017) Nanofluid two phase model analysis in existence of induced magnetic field. Int J Heat Mass Transf 107:288–299

    Article  Google Scholar 

  14. Sheikholeslami M (2017) Magnetic field influence on nanofluid thermal radiation in a cavity with tilted elliptic inner cylinder. J Mol Liq 229:137–147

    Article  Google Scholar 

  15. Sheikholeslami M, Shehzad S (2017) Magnetohydrodynamic nanofluid convection in a porous enclosure considering heat flux boundary condition. Int J Heat Mass Transf 106:1261–1269

    Article  Google Scholar 

  16. Sheikholeslami M, Hayat T, Alsaedi A (2017) Numerical study for external magnetic source influence on water based nanofluid convective heat transfer. Int J Heat Mass Transf 106:745–755

    Article  Google Scholar 

  17. Sheikholeslami M, Vajravelu K (2017) Nanofluid flow and heat transfer in a cavity with variable magnetic field. Appl Math Comput 298:272–282

    MathSciNet  Google Scholar 

  18. Sheikholeslami M, Chamkha AJ (2017) Influence of Lorentz forces on nanofluid forced convection considering Marangoni convection. J Mol Liq 225:750–757

    Article  Google Scholar 

  19. Sheikholeslamia M, Rokni HB (2017) Numerical modeling of nanofluid natural convection in a semi annulus in existence of Lorentz force. Comput Methods Appl Mech Eng 317:419–430

    Article  MathSciNet  Google Scholar 

  20. Sheikholeslami M (2017) Numerical simulation of magnetic nanofluid natural convection in porous media. Phys Lett A 381:494–503

    Article  Google Scholar 

  21. Sheikholeslami M (2017) Influence of Lorentz forces on nanofluid flow in a porous cylinder considering Darcy model. J Mol Liq 225:903–912

    Article  Google Scholar 

  22. Kandelousi MS (2014) Effect of spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary condition. Eur Phys J Plus 2014:129–248

    Google Scholar 

  23. Sheikholeslamia M, Chamkha AJ (2016) Flow and convective heat transfer of a ferro-nanofluid in a double-sided lid-driven cavity with a wavy wall in the presence of a variable magnetic field. Numer Heat Transf Part A 69(10):1186–1200

    Article  Google Scholar 

  24. Sheikholeslami M, Hayat T, Alsaedi A (2016) MHD free convection of Al2O3–water nanofluid considering thermal radiation: a numerical study. Int J Heat Mass Transf 96:513–524

    Article  Google Scholar 

  25. Sheikholeslamia M, Chamkha AJ (2016) Electrohydrodynamic free convection heat transfer of a nanofluid in a semi-annulus enclosure with a sinusoidal wall. Numer Heat Transf Part A 69(7):781–793

    Article  Google Scholar 

  26. Kandelousi MS (2014) KKL correlation for simulation of nanofluid flow and heat transfer in a permeable channel. Phys Lett A 378(45):3331–3339

    Article  Google Scholar 

  27. Sheikholeslami M (2015) Effect of uniform suction on nanofluid flow and heat transfer over a cylinder. J Braz Soc Mech Sci Eng 37:1623–1633

    Article  Google Scholar 

  28. Zill DG, Cullen MR (2009) Differential equations with boundary-value problems. Cengage Learning, Brooks/Cole

    MATH  Google Scholar 

  29. Boyce WE, DiPrima RC (2012) Elementary differential equations and boundary value problems. Wiley, New York

    MATH  Google Scholar 

  30. Ma WX, You Y (2004) Rational solutions of the Toda lattice equation in Casoratian form. Casoratian form. Chaos Solitons Fractals 22:395–406

    Article  MathSciNet  Google Scholar 

  31. Ma WX, You Y (2004) Solving the Korteweg–de Vries equation by its bilinear form: Wronskian solutions. Trans Am Math Soc 357:1753–1778

    Article  MathSciNet  Google Scholar 

  32. Mohyud-Din ST, Noor MA, Waheed A (2010) Variation of parameter method for initial and boundary value problems. World Appl Sci J 11:622–639

    Google Scholar 

  33. Mohyud-Din ST, Noor MA, Waheed A (2009) Modified variation of parameters method for second-order integro-differential equations and coupled systems. World Appl Sci J 6:1139–1146

    Google Scholar 

  34. Khan U, Ahmed N, Khan SIU, Zaidi ZA, Yang XJ, Mohyud-Din ST (2014) On unsteady two-dimensional and axisymmetric squeezing flow between parallel plates. Alex Eng J 53:463–468

    Article  Google Scholar 

  35. Khan U, Ahmed N, Zaidi ZA, Asadullah M, Mohyud-Din ST (2014) MHD squeezing flow between two infinite plates. Ain Shams Eng J 5:187–192

    Article  Google Scholar 

  36. Zaidi Z, Jan S, Ahmed N, Khan U, Mohyud-Din S (2013) Variation of parameters method for thin film flow of a third grade fluid down an inclined plane. Ital J Pure Appl Math 31:161–168

    MathSciNet  MATH  Google Scholar 

  37. Ramos J (2008) On the variational iteration method and other iterative techniques for nonlinear differential equations. Appl Math Comput 199:39–69

    MathSciNet  MATH  Google Scholar 

  38. Adomian G (1994) Solving Frontier problems of physics: the decomposition method. Kluwer, Dordrecht

    Book  Google Scholar 

  39. Wazwaz A (2009) Partial differential equations and solitary waves theory. Springer, Berlin

    Book  Google Scholar 

  40. Hosseini MM, Mohyud-Din ST, Ghaneai H, Usman M (2010) Auxiliary parameter in the variational iteration method and its optimal determination. Int J Nonlinear Sci Numer Simul 11(7):495–502

    Article  Google Scholar 

  41. Hosseini SMM, Mohyud-Din ST, Ghaneai H (2010) Variational iteration method for nonlinear Age-Structured population models using auxiliary parameter. Zeitschrift fr Naturforschung-A 65(12):1137–1142

    Google Scholar 

  42. Ghaneai H, Hosseini MM (2015) Variational iteration method with an auxiliary parameter for solving wave-like and heat-like equations in large domains. Comput Math Appl 69(5):363–373

    Article  MathSciNet  Google Scholar 

  43. Esmaili Q, Ramiar A, Alizadeh E, Ganji D (2008) An approximation of the analytical solution of the Jeffery–Hamel flow by decomposition method. Phys Lett A 372:3434–3439

    Article  Google Scholar 

  44. Sajid M, Hayat T (2009) The application of homotopy analysis method for MHD viscous flow due to a shrinking sheet. Chaos Solitons Fractals 39:1317–1323

    Article  Google Scholar 

  45. Noor N, Kechil SA, Hashim I (2010) Simple non-perturbative solution for MHD viscous flow due to a shrinking sheet. Commun Nonlinear Sci Numer Simul 15(15):144–148

    Article  Google Scholar 

  46. Ariel PD, Hayat T, Asghar S (2006) Homotopy perturbation method and axisymmetric flow over a stretching sheet. Int J Nonlinear Sci Numer Simul 7(4):399–406

    Article  Google Scholar 

  47. Hayat T, Shahzad F, Ayub M (2007) Analytical solution for the steady flow of the third grade fluid in a porous half space. Appl Math Model 31:2424–2432

    Article  Google Scholar 

  48. Marinca V, Herişanu N, Bota C, Marinca B (2009) An optimal homotopy asymptotic method applied to the steady flow of a fourth-grade fluid past a porous plate. Appl Math Lett 22:245–251

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umar Khan.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikander, W., Ahmed, N., Khan, U. et al. Coupling of optimal variation of parameters method with Adomian’s polynomials for nonlinear equations representing fluid flow in different geometries. Neural Comput & Applic 30, 3431–3444 (2018). https://doi.org/10.1007/s00521-017-2931-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-2931-x

Keywords

Navigation