Skip to main content
Log in

Hydromagnetic nanofluid flow past a stretching cylinder embedded in non-Darcian Forchheimer porous media

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The present article presents the hydromagnetic nanofluid flow past a stretching cylinder embedded in non-Darcian Forchheimer porous media by using Buongiorno’s mathematical model (Buongiorno in J Heat Transf 128:240–250, 2006; Nadeem et al. in J Taiwan Inst Chem Eng 45:121, 2014, Nadeem et al. Appl Nanosci 4:625–631, 2014). Thermal radiation via Roseland’s approximation (Akbar et al. in Chin J Aeronaut 26:1389–1397, 2013; Nadeem and Haq in J Aerosp Eng 28:04014061, 2012), Brownian motion, thermophoresis and Joule heating effects are also considered. To explore thermal characteristics, prescribed heat flux and prescribed mass flux boundary conditions are deployed. Governing flow problem consists of PDEs in the cylindrical form, which are converted into system of nonlinear ODEs by applying applicable similarity transforms. ODEs are tackled by RK–Fehlberg fourth–fifth-order numerical integration scheme with shooting algorithm. Impact of numerous involving physical parameters on flow features like temperature distribution, velocity distribution, Sherwood number, local Nusselt number and skin friction coefficient is shown through graphs and tables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\( C_{\infty } \) :

Ambient concentration (kg/m3)

\( T_{\infty } \) :

Ambient temperature (K)

\( D_{\text{B}} \) :

Brownian coefficient

\( {\text{Nb}} \) :

Brownian motion parameter

\( C_{\text{w}} \) :

Concentration at wall (kg/m3)

\( f \) :

Dimensionless stream function

\( \theta \) :

Dimensionless temperature

\( {\text{Ec}} \) :

Eckert number

\( \text{Re}_{x} \) :

Local Reynolds number

\( C_{\text{b}} \) :

Drag coefficient

\( B_{0} \) :

Magnetic field strength (T)

\( k_{2} \) :

Mean absorption coefficient

\( K^{*} \) :

Porosity parameter

\( {\text{Nu}} \) :

Nusselt number

\( {\text{Rd}} \) :

Radiation parameter

\( \Pr \) :

Prandtl number

\( T \) :

Nanofluid temperature (K)

\( T_{\text{w}} \) :

Temperature at wall (K)

\( C \) :

Nanoparticles concentration (kg/m3)

\( q \) :

Radiative heat flux

\( k \) :

Thermal conductivity (W/(m·K))

\( {\text{Cf}} \) :

Skin friction coefficient

\( M \) :

Magnetic parameter

\( k_{1} \) :

Permeability of porous medium

\( {\text{Sh}} \) :

Sherwood number

\( D_{\text{T}} \) :

Thermophoretic coefficient

\( {\text{Nt}} \) :

Thermophoretic parameter

\( u,\;v \) :

Velocity in x and r direction (m/s)

\( q_{\text{w}} \) :

Wall heat flux (J/s)

\( U_{\text{w}} \) :

Wall velocity (m/s)

\( \infty \) :

Ambient

f :

Fluid

p :

Particle

w :

Wall

\( \varepsilon \) :

Curvature parameter

\( \rho \) :

Density

\( \phi \) :

Dimensionless nanoparticles concentration

\( \mu \) :

Dynamic viscosity

\( c_{\text{p}} \) :

Effective heat capacity of nanoparticle material

\( c_{\text{f}} \) :

Heat capacity of base fluid

\( \nu \) :

Kinematic viscosity

\( F^{*} \) :

Local inertia coefficient

\( \sigma \) :

Magnetic permeability

\( \tau \) :

Ratio of heat capacities of nanoparticles to base fluid

\( \xi \) :

Similarity variable

\( \sigma^{*} \) :

Stefan–Boltzmann constant

\( \alpha \) :

Thermal diffusivity (m2/s)

\( q_{\text{m}} \) :

Wall mass flux (kg/s)

References

  1. Choi SU (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ Fed 231:99–106

    Google Scholar 

  2. Buongiorno J (2006) Convective transport in nanofluids. J Heat Transf 128:240–250

    Article  Google Scholar 

  3. Nadeem S, Haq RU, Khan ZH (2014) Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles. J Taiwan Inst Chem Eng 45:121–126

    Article  Google Scholar 

  4. Nadeem S, Haq RU, Khan ZH (2014) Numerical solution of non-Newtonian nanofluid flow over a stretching sheet. Appl Nanosci 4:625–631

    Article  Google Scholar 

  5. Akbar NS, Nadeem S, Haq RU, Khan ZH (2013) Radiation effects on MHD stagnation point flow of nanofluid towards a stretching surface with convective boundary condition. Chin J Aeronaut 26:1389–1397

    Article  Google Scholar 

  6. Nadeem S, Haq RU (2012) MHD boundary layer flow of a nanofluid passed through a porous shrinking sheet with thermal radiation. J Aerosp Eng 28:04014061

    Article  Google Scholar 

  7. Sakiadis BC (1961) Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow. AIChE J 7:26–28

    Article  Google Scholar 

  8. Crane LJ (1970) Flow past a stretching plate. Z fur Angew Math Phys ZAMP 21:645–647

    Article  Google Scholar 

  9. Freidoonimehr N, Rashidi MM, Mahmud S (2015) Unsteady MHD free convective flow past a permeable stretching vertical surface in a nanofluid. Int J Therm Sci 87:136–145

    Article  Google Scholar 

  10. Maqbool K, Sohail A, Manzoor N, Ellahi R (2016) Hall effect on Falkner Skan boundary layer flow of FENE-P fluid over a stretching sheet. Commun Theor Phys 66:547

    Article  MathSciNet  Google Scholar 

  11. Zeeshan A, Majeed A (2016) Non Darcy mixed convection flow of magnetic fluid over a permeable stretching sheet with Ohmic dissipation. J Magn 21:153–158

    Article  Google Scholar 

  12. Sheikholeslami M (2015) Effect of uniform suction on nanofluid flow and heat transfer over a cylinder. J Braz Soc Mech Sci Eng 37:1623–1633

    Article  Google Scholar 

  13. Makinde OD, Aziz A (2011) Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int J Therm Sci 50:1326–1332

    Article  Google Scholar 

  14. Nadeem S, Haq RU (2014) Effect of thermal radiation for megnetohydrodynamic boundary layer flow of a nanofluid past a stretching sheet with convective boundary conditions. J Comput Theor Nanosci 11:32–40

    Article  Google Scholar 

  15. Ishak A, Nazar R, Pop I (2008) Magnetohydrodynamic (MHD) flow and heat transfer due to a stretching cylinder. Energy Convers Manag 49:3265–3269

    Article  Google Scholar 

  16. Kandelousi MS (2014) Effect of spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary condition. Eur Phys J Plus 129:1–12

    Article  Google Scholar 

  17. Sheikholeslami M, Chamkha AJ (2016) Flow and convective heat transfer of a ferro nanofluid in a double-sided lid-driven cavity with a wavy wall in the presence of a variable magnetic field. Numer Heat Transf Part A Appl 69:1186–1200

    Article  Google Scholar 

  18. Dhanai R, Rana P, Kumar L (2016) MHD mixed convection nanofluid flow and heat transfer over an inclined cylinder due to velocity and thermal slip effects: Buongiorno’s model. Powder Technol 288:140–150

    Article  Google Scholar 

  19. Hussain T, Shehzad SA, Hayat T, Alsaedi A (2015) Hydromagnetic flow of third grade nanofluid with viscous dissipation and flux conditions. AIP Adv 5:087169

    Article  Google Scholar 

  20. Sheikholeslami M, Ellahi R (2015) Electrohydrodynamic nanofluid hydrothermal treatment in an enclosure with sinusoidal upper wall. Appl Sci 5:294–306

    Article  Google Scholar 

  21. Das K, Duari PR, Kundu PK (2015) Numerical simulation of nanofluid flow with convective boundary condition. J Egypt Math Soc 23:435–439

    Article  MathSciNet  Google Scholar 

  22. Turkyilmazoglu M (2012) Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids. Chem Eng Sci 84:182–187

    Article  Google Scholar 

  23. Bachok N, Ishak A (2010) Flow and heat transfer over a stretching cylinder with prescribed surface heat flux. Malays J Math Sci 4:159–169

    MATH  Google Scholar 

  24. Hayat T, Abbas T, Ayub M, Farooq M, Alsaedi A (2016) Flow of nanofluid due to convectively heated Riga plate with variable thickness. J Mol Liq 222:854–862

    Article  Google Scholar 

  25. Dogonchi AS, Ganji DD (2016) Thermal radiation effect on the nano-fluid buoyancy flow and heat transfer over a stretching sheet considering Brownian motion. J Mol Liq 223:521–527

    Article  Google Scholar 

  26. Rokni HB, Alsaad DM, Valipour P (2016) Electrohydrodynamic nanofluid flow and heat transfer between two plates. J Mol Liq 216:583–589

    Article  Google Scholar 

  27. Rashidi MM, Abelman S, Mehr NF (2013) Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. Int J Heat Mass Transf 62:515–525

    Article  Google Scholar 

  28. Hayat T, Qayyum S, Alsaedi A, Shafiq A (2016) Inclined magnetic field and heat source/sink aspects in flow of nanofluid with nonlinear thermal radiation. Int J Heat Mass Transf 103:99–107

    Article  Google Scholar 

  29. Nadeem S, Masood S, Mehmood R, Sadiq MA (2015) Optimal and numerical solutions for an MHD micropolar nanofluid between rotating horizontal parallel plates. PLoS ONE 10:0124016

    Article  Google Scholar 

  30. Bahiraei M, Abdi F (2016) Development of a model for entropy generation of water-TiO2 nanofluid flow considering nanoparticle migration within a minichannel. Chemometr Intell Lab Syst 157:16–28

    Article  Google Scholar 

  31. Awais M, Saleem S, Hayat T, Irum S (2016) Hydromagnetic couple-stress nanofluid flow over a moving convective wall: OHAM analysis. Acta Astronaut 129:271–276

    Article  Google Scholar 

  32. Si X, Li H, Zheng L, Shen Y, Zhang X (2017) A mixed convection flow and heat transfer of pseudo-plastic power law nanofluids past a stretching vertical plate. Int J Heat Mass Transf 105:350–358

    Article  Google Scholar 

  33. Shehzad N, Zeeshan A, Ellahi R, Vafai K (2016) Convective heat transfer of nanofluid in a wavy channel: Buongiorno’s mathematical model. J Mol Liq 222:446–455

    Article  Google Scholar 

  34. Bhatti MM, Abbas T, Rashidi MM, Ali MES (2016) Numerical simulation of entropy generation with thermal radiation on MHD Carreau nanofluid towards a shrinking sheet. Entropy 18:200

    Article  MathSciNet  Google Scholar 

  35. Ayub M, Abbas T, Bhatti MM (2016) Inspiration of slip effects on electromagnetohydrodynamics (EMHD) nanofluid flow through a horizontal Riga plate. Eur Phys J Plus 131:1–9

    Article  Google Scholar 

  36. Sheikholeslami M (2017) Numerical simulation of magnetic nanofluid natural convection in porous media. Phys Lett A 381:494–503

    Article  Google Scholar 

  37. Sheikholeslami M, Chamkha AJ (2017) Influence of Lorentz forces on nanofluid forced convection considering Marangoni convection. J Mol Liq 225:750–757

    Article  Google Scholar 

  38. Sheikholeslami M, Chamkha AJ (2016) Electrohydrodynamic free convection heat transfer of a nanofluid in a semi-annulus enclosure with a sinusoidal wall. Numer Heat Transf Part A Appl 69(7):781–793

    Article  Google Scholar 

  39. Shirvan KM, Mamourian M, Mirzakhanlari S, Ellahi R, Vafai K (2017) Numerical investigation and sensitivity analysis of effective parameters on combined heat transfer performance in a porous solar cavity receiver by response surface methodology. Int J Heat Mass Transf 105:811–825

    Article  Google Scholar 

  40. Umavathi JC, Ojjela O, Vajravelu K (2017) Numerical analysis of natural convective flow and heat transfer of nanofluids in a vertical rectangular duct using Darcy–Forchheimer–Brinkman model. Int J Therm Sci 111:511–524

    Article  Google Scholar 

  41. Ibanez G, Lopez A, Pantoja J, Moreira J (2016) Entropy generation analysis of a nanofluid flow in MHD porous microchannel with hydrodynamic slip and thermal radiation. Int J Heat Mass Transf 100:89–97

    Article  Google Scholar 

  42. Ellahi R, Shivanian E, Abbasbandy S, Hayat T (2015) Analysis of some magnetohydrodynamic flows of third-order fluid saturating porous space. J Porous Media 18:89–98

    Article  Google Scholar 

  43. Shirvan KM, Ellahi R, Mirzakhanlari S, Mamourian M (2016) Enhancement of heat transfer and heat exchanger effectiveness in a double pipe heat exchanger filled with porous media: numerical simulation and sensitivity analysis of turbulent fluid flow. Appl Therm Eng 109:761–774

    Article  Google Scholar 

  44. Bhatti MM, Rashidi MM (2016) Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet. J Mol Liq 221:567–573

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Obaid Ullah Mehmood.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding publication of this research paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeeshan, A., Maskeen, M.M. & Mehmood, O.U. Hydromagnetic nanofluid flow past a stretching cylinder embedded in non-Darcian Forchheimer porous media. Neural Comput & Applic 30, 3479–3489 (2018). https://doi.org/10.1007/s00521-017-2934-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-2934-7

Keywords

Navigation