Skip to main content

Advertisement

Log in

Intelligent computing approach to solve the nonlinear Van der Pol system for heartbeat model

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this work, an intelligent computing algorithm is developed for finding the approximate solution of heart model based on nonlinear Van der Pol (VdP)-type second-order ordinary differential equations (ODEs) using feed-forward artificial neural networks (FF-ANNs) optimized with genetic algorithms (GAs) hybrid through interior-point algorithm (IPA). The mathematical modeling of the system is constructed using FF-ANN models by defining an unsupervised error and unknown weights; the networks are tuned globally with GAs, and local refinement of the results is made with IPA. Design scheme is applied to study the VdP heart dynamics model by varying the pulse shape modification factor, damping coefficients and external forcing factor while keeping the fixed value of the ventricular contraction period. The results of the proposed algorithm are compared with reference numerical solutions of Adams method to establish its correctness. Multiple independent runs are performed for the scheme, and results of statistical analyses in terms of mean absolute deviation, root-mean-square error and Nash–Sutcliffe efficiency illustrate its applicability, effectiveness and reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Grudziński K, Żebrowski JJ (2004) Modeling cardiac pacemakers with relaxation oscillators. Phys A Stat Mech Appl 336(1):153–162

    Article  MathSciNet  Google Scholar 

  2. Hall K et al (1997) Dynamic control of cardiac alternans. Phys Rev Lett 78(23):4518

    Article  Google Scholar 

  3. Dos Santos AM, Lopes SR, Viana RL (2004) Rhythm synchronization and chaotic modulation of coupled Van der Pol oscillators in a model for the heartbeat. Phys A Stat Mech Appl 338(3):335–355

    Article  MathSciNet  Google Scholar 

  4. Ferreira BB, de Paula AS, Savi MA (2011) Chaos control applied to heart rhythm dynamics. Chaos Solitons Fractals 44(8):587–599

    Article  Google Scholar 

  5. Kimiaeifar A, Saidi AR, Bagheri GH, Rahimpour M, Domairry DG (2009) Analytical solution for Van der Pol-Duffing oscillators. Chaos Solitons Fractals 42(5):2660–2666

    Article  Google Scholar 

  6. Shukla AK, Ramamohan TR, Srinivas S (2014) A new analytical approach for limit cycles and quasi-periodic solutions of nonlinear oscillators: the example of the forced Van der Pol Duffing oscillator. Phys Scr 89(7):075202

    Article  Google Scholar 

  7. Kimiaeifar A, Saidi AR, Sohouli AR, Ganji DD (2010) Analysis of modified Van der Pol’s oscillator using He’s parameter-expanding methods. Curr Appl Phys 10(1):279–283

    Article  Google Scholar 

  8. Khan Y, Madani M, Yildirim A, Abdou MA, Faraz N (2011) A new approach to Van der Pol’s oscillator problem. Z Naturforsch A 66(10–11):620–624

    Google Scholar 

  9. Motsa SS, Sibanda P (2012) A note on the solutions of the Van der Pol and Duffing equations using a linearisation method. Math Prob Eng 2012:693453. doi:10.1155/2012/693453

    Article  MathSciNet  MATH  Google Scholar 

  10. Yadav N, Yadav A, Kim JH (2016) Numerical solution of unsteady advection dispersion equation arising in contaminant transport through porous media using neural networks. Comput Math Appl. doi:10.1016/j.camwa.2016.06.014

    Article  MathSciNet  MATH  Google Scholar 

  11. Yadav N, Yadav A, Kumar M, Kim JH (2015) An efficient algorithm based on artificial neural networks and particle swarm optimization for solution of nonlinear Troesch’s problem. Neural Comput Appl. doi:10.1007/s00521-015-2046-1

    Article  Google Scholar 

  12. Kumar M, Yadav N (2011) Multilayer perceptrons and radial basis function neural network methods for the solution of differential equations: a survey. Comput Math Appl 62(10):3796–3811

    Article  MathSciNet  Google Scholar 

  13. Kumar M, Yadav N (2015) Numerical solution of Bratu’s problem using multilayer perceptron neural network method. Natl Acad Sci Lett 38(5):425–428

    Article  MathSciNet  Google Scholar 

  14. Khalid M, Sultana M, Zaidi F (2014) Numerical solution of sixth-order differential equations arising in astrophysics by neural network. Int J Comput Appl 107(6):1–6. doi:10.5120/18752-0023

    Article  Google Scholar 

  15. Kumar M, Yadav N (2013) Buckling analysis of a beam–column using multilayer perceptron neural network technique. J Franklin Inst 350(10):3188–3204

    Article  MathSciNet  Google Scholar 

  16. Effati S, Mansoori A, Eshaghnezhad M (2015) An efficient projection neural network for solving bilinear programming problems. Neurocomputing 168:1188–1197

    Article  Google Scholar 

  17. Momani S, Abo-Hammour ZS, Alsmadi OM (2016) Solution of inverse kinematics problem using genetic algorithms. Appl Math Inf Sci 10(1):225

    Article  Google Scholar 

  18. Effati S, Buzhabadi R (2012) A neural network approach for solving Fredholm integral equations of the second kind. Neural Comput Appl 21(5):843–852

    Article  Google Scholar 

  19. McFall KS (2013) Automated design parameter selection for neural networks solving coupled partial differential equations with discontinuities. J Franklin Inst 350(2):300–317

    Article  MathSciNet  Google Scholar 

  20. Chedjou JC, Kyamakya K (2015) A universal concept based on cellular neural networks for ultrafast and flexible solving of differential equations. IEEE Trans Neural Netw Learn Syst 26(4):749–762

    Article  MathSciNet  Google Scholar 

  21. Mall S, Chakraverty S (2016) Application of legendre neural network for solving ordinary differential equations. Appl Soft Comput 43:347–356

    Article  Google Scholar 

  22. Chakraverty S, Mall S (2014) Regression-based weight generation algorithm in neural network for solution of initial and boundary value problems. Neural Comput Appl 25(3–4):585–594

    Article  Google Scholar 

  23. Mall S, Chakraverty S (2015) Numerical solution of nonlinear singular initial value problems of Emden-Fowler type using Chebyshev Neural Network method. Neurocomputing 149:975–982

    Article  Google Scholar 

  24. Khan JA, Raja MAZ, Syam MI, Tanoli SAK, Awan SE (2015) Design and application of nature inspired computing approach for nonlinear stiff oscillatory problems. Neural Comput Appl 26(7):1763–1780

    Article  Google Scholar 

  25. Mall S, Chakraverty S (2016) Hermite functional link neural network for solving the Van der Pol-Duffing oscillator equation. Neural Comput. doi:10.1162/NECO_a_00858

    Article  Google Scholar 

  26. Raja MAZ (2014) Solution of the one-dimensional Bratu equation arising in the fuel ignition model using ANN optimised with PSO and SQP. Connection Science 26(3):195–214

    Article  Google Scholar 

  27. Abo-Hammour Z, Abu Arqub O, Momani S, Shawagfeh N (2014) Optimization solution of Troesch’s and Bratu’s problems of ordinary type using novel continuous genetic algorithm. Discret Dyn Nat Soc 2014:401696. doi:10.1155/2014/401696

    Article  MathSciNet  Google Scholar 

  28. Raja MAZ (2014) Stochastic numerical treatment for solving Troesch’s problem. Inf Sci 279:860–873

    Article  MathSciNet  Google Scholar 

  29. Raja MAZ, Khan MAR, Mahmood T, Farooq U, Chaudhary NI (2016) Design of bio-inspired computing technique for nanofluidics based on nonlinear Jeffery-Hamel flow equations. Can J Phys 94(5):474–489

    Article  Google Scholar 

  30. Raja MAZ, Farooq U, Chaudhary NI, Wazwaz AM (2016) Stochastic numerical solver for nanofluidic problems containing multi-walled carbon nanotubes. Appl Soft Comput 38:561–586

    Article  Google Scholar 

  31. Sadollah A, Choi Y, Yoo DG, Kim JH (2015) Metaheuristic algorithms for approximate solution to ordinary differential equations of longitudinal fins having various profiles. Appl Soft Comput 33:360–379

    Article  Google Scholar 

  32. Raja MAZ, Khan JA, Haroon T (2015) Stochastic numerical treatment for thin film flow of third grade fluid using unsupervised neural networks. J Taiwan Inst Chem Eng 48:26–39

    Article  Google Scholar 

  33. Effati S, Skandari MHN (2012) Optimal control approach for solving linear Volterra integral equations. Int J Intell Syst Appl (IJISA) 4(4):40

    Google Scholar 

  34. Raja MAZ, Ahmad I, Khan I, Syam MI, Wazwaz AM (2016) Neuro-heuristic computational intelligence for solving nonlinear pantograph systems. Front Inf Technol Electron Eng. doi:10.1631/FITEE.1500393

    Article  Google Scholar 

  35. Raja MAZ (2014) Numerical treatment for boundary value problems of pantograph functional differential equation using computational intelligence algorithms. Appl Soft Comput 24:806–821

    Article  Google Scholar 

  36. Effati S, Pakdaman M (2010) Artificial neural network approach for solving fuzzy differential equations. Inf Sci 180(8):1434–1457

    Article  MathSciNet  Google Scholar 

  37. Raja MAZ, Khan JA, Shah SM, Samar R, Behloul D (2015) Comparison of three unsupervised neural network models for first Painlevé transcendent. Neural Comput Appl 26(5):1055–1071

    Article  Google Scholar 

  38. Baymani M, Effati S, Niazmand H, Kerayechian A (2015) Artificial neural network method for solving the Navier–Stokes equations. Neural Comput Appl 26(4):765–773

    Article  Google Scholar 

  39. Raja MAZ, Samar R, Haroon T, Shah SM (2015) Unsupervised neural network model optimized with evolutionary computations for solving variants of nonlinear MHD Jeffery-Hamel problem. Appl Math Mech 36(12):1611–1638

    Article  MathSciNet  Google Scholar 

  40. Raja MAZ, Samar R (2014) Numerical treatment for nonlinear MHD Jeffery-Hamel problem using neural networks optimized with interior point algorithm. Neurocomputing 124:178–193

    Article  Google Scholar 

  41. Sabouri J, Effati S, Pakdaman M (2017) A neural network approach for solving a class of fractional optimal control problems. Neural Process Lett 45(1):59–74

    Article  Google Scholar 

  42. Raja MAZ, Samar R, Alaidarous ES, Shivanian E (2016) Bio-inspired computing platform for reliable solution of Bratu-type equations arising in the modeling of electrically conducting solids. Appl Math Model 40(11):5964–5977

    Article  MathSciNet  Google Scholar 

  43. Khan JA, Raja MAZ, Rashidi MM, Syam MI, Wazwaz AM (2015) Nature-inspired computing approach for solving non-linear singular Emden-Fowler problem arising in electromagnetic theory. Connect Sci 27(4):377–396

    Article  Google Scholar 

  44. Iftikhar Ahmad MAZ, Raja Muhammad Bilal, Ashraf Farooq (2016) Neural network methods to solve the Lane-Emden type equations arsing in thermodynamic studies of the spherical gas cloud model. Neural Comput Appl. doi:10.1007/s00521-016-2400-y

    Article  Google Scholar 

  45. Mall S, Chakraverty S (2014) Chebyshev neural network based model for solving Lane-Emden type equations. Appl Math Comput 247:100–114

    MathSciNet  MATH  Google Scholar 

  46. Raja MAZ, Manzar MA, Samar R (2015) An efficient computational intelligence approach for solving fractional order Riccati equations using ANN and SQP. Appl Math Model 39(10):3075–3093

    Article  MathSciNet  Google Scholar 

  47. Van der Pol B, Van der Mark J (1928) LXXII. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. Lond Edinb Dublin Philos Mag J Sci 6(38):763–775

    Article  Google Scholar 

  48. Ge ZM, Hsu MY (2007) Chaos in a generalized van der Pol system and in its fractional order system. Chaos Solitons Fractals 33(5):1711–1745

    Article  Google Scholar 

  49. Grudziński K, Żebrowski JJ (2004) Modeling cardiac pacemakers with relaxation oscillators. Phys A 336(1):153–162

    Article  MathSciNet  Google Scholar 

  50. Hsu SB (2006) Ordinary differential equations with applications. World scientific, Singapore

    MATH  Google Scholar 

  51. Al-Smadi M, Abu Arqub O, Momani S (2013) A computational method for two-point boundary value problems of fourth-order mixed integrodifferential equations. Math Prob Eng 2013:832074. doi:10.1155/2013/832074

    Article  MathSciNet  MATH  Google Scholar 

  52. Abu Arqub O, Abo-Hammour Z, Momani S (2014) Application of continuous genetic algorithm for nonlinear system of second-order boundary value problems. Appl Math 8(1):235–248

    MATH  Google Scholar 

  53. Arqub OA, Abo-Hammour Z (2014) Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Inf Sci 279:396–415

    Article  MathSciNet  Google Scholar 

  54. Abo-Hammour Z, Alsmadi O, Momani S, Abu Arqub O (2013) A genetic algorithm approach for prediction of linear dynamical systems. Math Prob Eng 2013:831657. doi:10.1155/2013/831657

    Article  Google Scholar 

  55. Potra FA, Wright SJ (2000) Interior-point methods. J Comput Appl Math 124(1):281–302

    Article  MathSciNet  Google Scholar 

  56. Nesterov Y, Tunçel L (2016) Local superlinear convergence of polynomial-time interior-point methods for hyperbolicity cone optimization problems. SIAM J Optim 26(1):139–170

    Article  MathSciNet  Google Scholar 

  57. Benson HY, Shanno DF (2014) Interior-point methods for nonconvex nonlinear programming: cubic regularization. Comput Optim Appl 58(2):323–346

    Article  MathSciNet  Google Scholar 

  58. Word DP, Young JK, Cummings DA, Iamsirithaworn S, Laird CD (2013) Interior-point methods for estimating seasonal parameters in discrete-time infectious disease models. PLoS ONE 8(10):e74208

    Article  Google Scholar 

  59. Duan C, Fang W, Jiang L, Liu J (2015) Adaptive barrier filter-line-search interior point method for optimal power flow with FACTS devices. IET Gener Transm Distrib 9(16):2792–2798

    Article  Google Scholar 

  60. Chen S, Grelu P, Mihalache D, Baronio F (2016) Families of rational soliton solution of the Kadomtsev–Petviashvili I equation. Rom Rep Phys 68(4):1407–1424

    Google Scholar 

  61. Liu Y, Fokas A, Mihalache D, He J (2016) Parallet line rogue waves of the third-type Davey–Stewartson equation. Rom Rep Phys 68(4):1425–1446

    Google Scholar 

  62. Mihalache D (2015) Localized structures in nonlinear optical media: a selection of recent studies. Rom Rep Phys 67:1383–1400

    Google Scholar 

  63. Triki H, Leblond H, Mihalache D (2016) Soliton solutions of nonlinear diffusion–reaction-type equations with time-dependent coefficients accounting for long-range diffusion. Nonlinear Dyn 86(3):2115–2126

    Article  MathSciNet  Google Scholar 

  64. Triki H, Wazwaz AM (2016) On soliton dynamics of the generalized Fisher equation with timedependent coefficients. Rom Rep Phys 68:65–78

    Google Scholar 

  65. Yang ZP, Zhong WP, Mihalache D (2016) Classification of families of exact localized solutions of potential-free Schrodinger equation in spherical coordinates. Rom J Phys 61:814–826

    Google Scholar 

  66. He Y, Zhu X, Mihalache D (2016) Dynamics of spatial solitons in paritytime-symmetric optical lattices: a selection of recent theoretical results. Rom J Phys 61:595–613

    Google Scholar 

Download references

Acknowledgement

The authors would like to express their appreciation to the United Arab Emirates University Research Affairs for the financial support of Grant No. COS/IRG-09/15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asif Zahoor Raja.

Ethics declarations

Conflict of interest

All the authors of the manuscript declared that there are no conflicts of interest

Human participants and animal statement

All the authors of the manuscript declared that there is no research involving human participants and/or animal

Informed consent

All the authors of the manuscript declared that there is no material that required informed consent

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja, M.A.Z., Shah, F.H. & Syam, M.I. Intelligent computing approach to solve the nonlinear Van der Pol system for heartbeat model. Neural Comput & Applic 30, 3651–3675 (2018). https://doi.org/10.1007/s00521-017-2949-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-2949-0

Keywords

Navigation