Skip to main content
Log in

Application of artificial bee colony algorithm in feature optimization for motor imagery EEG classification

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Motor imagery (MI) tasks evoke event-related desynchronization (ERD) and synchronization (ERS); the ERD-/ERS-related features appearing at specific channels are frequency and time localized. Therefore, optimal channels, frequency band and time interval are of great significance for MI electroencephalography feature extraction. In this paper, channel selection method based on linear discriminant criteria is used to automatically select the channels with high discriminative powers. In addition, the concept of artificial bee colony algorithm is first introduced to find the global optimal combination of frequency band and time interval simultaneously without prior knowledge for common spatial pattern features extraction and classification. Experimental results demonstrate that this scheme can adapt to user-specific patterns and find the relatively optimal channels, frequency band and time interval for feature extraction. The classification results on the BCI Competition III Dataset IVa and BCI Competition IV Dataset IIa clearly present the effectiveness of the proposed method outperforming most of the other competing methods in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hu SQ, Tian QQ, Cao Y, Zhang JH, Kong WZ (2013) Motor imagery classification based on joint regression model and spectral power. Neural Comput Appl 23(7–8):1931–1936. doi:10.1007/s00521-012-1244-3

    Article  Google Scholar 

  2. Blankertz B, Sannelli C, Haider S, Hammer EM, Kubler A, Muller KR, Curio G, Dickhaus T (2010) Neurophysiological predictor of SMR-based BCI performance. Neuroimage 51(4):1303–1309. doi:10.1016/j.neuroimage.2010.03.022

    Article  Google Scholar 

  3. Ince NF, Goksu F, Tewfik AH, Arica S (2009) Adapting subject specific motor imagery EEG patterns in space-time-frequency for a brain computer interface. Biomed Signal Process Control 4(3):236–246. doi:10.1016/j.bspc.2009.03.005

    Article  Google Scholar 

  4. Pichiorri F, Morone G, Petti M, Toppi J, Pisotta I, Molinari M, Paolucci S, Inghilleri M, Astolfi L, Cincotti F, Mattia D (2015) Brain-computer interface boosts motor imagery practice during stroke recovery. Ann Neurol 77(5):851–865. doi:10.1002/ana.24390

    Article  Google Scholar 

  5. Tavakolan M, Yong XY, Zhang X, Menon C (2016) Classification scheme for arm motor imagery. J Med Biol Eng 36(1):12–21. doi:10.1007/s40846-016-0102-7

    Article  Google Scholar 

  6. Hamedi M, Salleh SH, Noor AM (2016) Electroencephalographic motor imagery brain connectivity analysis for BCI: a review. Neural Comput 28(6):999–1041. doi:10.1162/NECO_a_00838

    Article  Google Scholar 

  7. Siuly S, Li Y (2015) Discriminating the brain activities for brain-computer interface applications through the optimal allocation-based approach. Neural Comput Appl 26(4):799–811. doi:10.1007/s00521-014-1753-3

    Article  Google Scholar 

  8. Lotte F, Guan CT (2011) regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans Biomed Eng 58(2):355–362. doi:10.1109/tbme.2010.2082539

    Article  Google Scholar 

  9. Ramoser H, Muller-Gerking J, Pfurtscheller G (2000) Optimal spatial filtering of single trial EEG during imagined hand movement. Ieee Trans Rehabil Eng 8(4):441–446. doi:10.1109/86.895946

    Article  Google Scholar 

  10. Dornhege G, Blankertz B, Krauledat M, Losch F, Curio G, Muller KR (2006) Combined optimization of spatial and temporal filters for improving brain-computer interfacing. IEEE Trans Biomed Eng 53(11):2274–2281. doi:10.1109/tbme.2006.883649

    Article  Google Scholar 

  11. Thomas KP, Guan CT, Lau CT, Vinod AP, Ang KK (2009) A new discriminative common spatial pattern method for motor imagery brain-computer interfaces. IEEE Trans Biomed Eng 56(11):2730–2733. doi:10.1109/tbme.2009.2026181

    Article  Google Scholar 

  12. Kee CY, Ponnambalam SC, Loo CK (2015) Multi-objective genetic algorithm as channel selection method for P300 and motor imagery data set. Neurocomputing 161:120–131. doi:10.1016/j.neucom.2015.02.057

    Article  Google Scholar 

  13. Xu P, Liu TJ, Zhang R, Zhang YS, Yao DZ (2014) Using particle swarm to select frequency band and time interval for feature extraction of EEG based BCI. Biomed Signal Process Control 10:289–295. doi:10.1016/j.bspc.2013.08.012

    Article  Google Scholar 

  14. Ang KK, Chin ZY, Zhang HH, Guan CT (2012) Mutual information-based selection of optimal spatial-temporal patterns for single-trial EEG-based BCIs. Pattern Recogn 45(6):2137–2144. doi:10.1016/j.patcog.2011.04.018

    Article  MATH  Google Scholar 

  15. Hsu WY (2011) EEG-based motor imagery classification using enhanced active segment selection and adaptive classifier. Comput Biol Med 41(8):633–639. doi:10.1016/j.compbiomed.2011.05.014

    Article  Google Scholar 

  16. Wang T, Deng H, He B (2004) Classifying EEG-based motor imagery tasks by means of time-frequency synthesized spatial patterns. Clin Neurophysiol 115(12):2744–2753. doi:10.1016/j.clinph.2004.06.022

    Article  Google Scholar 

  17. Wang T, He B (2004) An efficient rhythmic component expression and weighting synthesis strategy for classifying motor imagery EEG in a brain-computer interface. J Neural Eng. doi:10.1088/1741-2560/1/1/001

    Article  Google Scholar 

  18. Wu B, Yang F, Zhang JC, Wang YW, Zheng XX, Chen WD (2012) A frequency–temporal-spatial method for motor-related electroencephalography pattern recognition by comprehensive feature optimization. Comput Biol Med 42(4):353–363. doi:10.1016/j.compbiomed.2011.11.014

    Article  Google Scholar 

  19. Higashi H, Tanaka T (2013) Common spatio-time-frequency patterns for motor imagery-based brain machine interfaces. Comput Intell Neurosci. doi:10.1155/2013/537218

    Article  Google Scholar 

  20. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8(1):687–697. doi:10.1016/j.asoc.2007.05.007

    Article  Google Scholar 

  21. Gao WF, Liu SY (2012) A modified artificial bee colony algorithm. Comput Op Res 39(3):687–697. doi:10.1016/j.cor.2011.06.007

    Article  MATH  Google Scholar 

  22. Blankertz B, Muller KR, Krusienski DJ, Schalk G, Wolpaw JR, Schlogl A, Pfurtscheller G, Millan JDR, Schroder M, Birbaumer N (2006) The BCI competition III: validating alternative approaches to actual BCI problems. IEEE Trans Neural Syst Rehabil Eng 14(2):153–159. doi:10.1109/tnsre.2006.875642

    Article  Google Scholar 

  23. Shin Y, Lee S, Lee J, Lee HN (2012) Sparse representation-based classification scheme for motor imagery-based brain-computer interface systems. J Neural Eng. doi:10.1088/1741-2560/9/5/056002

    Article  Google Scholar 

  24. Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132. doi:10.1016/j.amc.2009.03.090

    Article  MathSciNet  MATH  Google Scholar 

  25. Saravanan M, Arulkumar PV (2015) An artificial bee colony algorithm for design and optimize the fixed area layout problems. Int J Adv Manuf Technol 78(9–12):2079–2095. doi:10.1007/s00170-014-6774-7

    Article  Google Scholar 

  26. Lemm S, Blankertz B, Curio G, Muller KR (2005) Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans Biomed Eng 52(9):1541–1548. doi:10.1109/tbme.2005.851521

    Article  Google Scholar 

  27. Ang KK, Chin ZY, Zhang HH, Guan CT, Ieee (2008) Filter bank common spatial pattern (FBCSP) in brain-computer interface. In: 2008 IEEE international joint conference on neural networks (IJCNN), vols 1–8, pp 2390–2397

  28. Zhang HH, Chin ZY, Ang KK, Guan CT, Wang CC (2011) Optimum spatio-spectral filtering network for brain-computer interface. IEEE Trans Neural Netw 22(1):52–63. doi:10.1109/tnn.2010.2084099

    Article  Google Scholar 

  29. Suk HI, Lee SW (2013) A novel Bayesian framework for discriminative feature extraction in brain-computer interfaces. IEEE Trans Pattern Anal Mach Intell 35(2):286–299. doi:10.1109/tpami.2012.69

    Article  Google Scholar 

  30. Tangermann M, Muller KR, Aertsen A, Birbaumer N, Braun C, Brunner C, Leeb R, Mehring C, Miller KJ, Muller-Putz GR, Nolte G, Pfurtscheller G, Preissl H, Schalk G, Schogl A, Vidaurre C, Waldert S, Blankertz B (2012) Review of the BCI competition IV. Front Neurosci. doi:10.3389/fnins.2012.00055

    Article  Google Scholar 

  31. Meng JJ, Huang G, Zhang DG, Zhu XY (2013) Optimizing spatial spectral patterns jointly with channel configuration for brain-computer interface. Neurocomputing 104:115–126. doi:10.1016/j.neucom.2012.11.004

    Article  Google Scholar 

  32. Das AK, Suresh S, Sundararajan N (2016) A discriminative subject-specific spatio-spectral filter selection approach for EEG based motor-imagery task classification. Expert Syst Appl 64:375–384. doi:10.1016/j.eswa.2016.08.007

    Article  Google Scholar 

  33. Arvaneh M, Guan CT, Ang KK, Quek C (2014) Mutual information-based optimization of sparse spatio-spectral filters in brain-computer interface. Neural Comput Appl 25(3–4):625–634. doi:10.1007/s00521-013-1523-7

    Article  Google Scholar 

  34. Wu W, Gao XR, Hong B, Gao SK (2008) Classifying single-trial EEG during motor imagery by iterative spatio-spectral patterns learning (ISSPL). IEEE Trans Biomed Eng 55(6):1733–1743. doi:10.1109/tbme.2008.919125

    Article  Google Scholar 

  35. Siuly Li Y, Wen P (2013) Identification of motor imagery tasks through CC–LR algorithm in brain computer interface. Int J Bioinform Res Appl 9(2):156–172

    Article  Google Scholar 

  36. Siuly, Li Y, Wu J, Yang J (2011) Developing a logistic regression model with cross-correlation for motor imagery signal recognition. In: 2011 IEEE/ICME international conference on complex medical engineering (CME), pp 502–507

  37. Novi Q, Guan C, Dat TH, Xue P, Ieee (2007) Sub-band common spatial pattern (SBCSP) for brain-computer interface. In: 2007 3rd international IEEE/EMBS conference on neural engineering, vols 1 and 2. doi:10.1109/cne.2007.369647

  38. Kang S, Cho S, Kang P (2015) Constructing a multi-class classifier using one-against-one approach with different binary classifiers. Neurocomputing 149:677–682. doi:10.1016/j.neucom.2014.08.006

    Article  Google Scholar 

Download references

Acknowledgements

The study is supported by the Jiangsu Province Science and Technology Support Program of China (No. BE2012740). Special thanks to the reviewers for their positive and constructive comments and suggestions on our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, M., Wang, A. & Liu, F. Application of artificial bee colony algorithm in feature optimization for motor imagery EEG classification. Neural Comput & Applic 30, 3677–3691 (2018). https://doi.org/10.1007/s00521-017-2950-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-2950-7

Keywords

Navigation