Skip to main content

Advertisement

Log in

A hybrid soft computing approach based on feature selection for estimation of filtration combustion characteristics

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Filtration combustion is a type of combustion in which exothermic reactions occur within a porous matrix. In recent years, some researches were performed on the use of noncatalytic partial oxidation method for hydrogen production in reactors based on filtration combustion. In this paper, a new technique is presented for estimation of some important characteristics of filtration combustion process. Hydrogen production, peak combustion temperature, and wave velocity are three main variables which are estimated by suggested forecasting engine. The parameters which have direct effect on above-mentioned variables are: equivalence ratio (\(\varphi\)), reactant inlet velocity (V), bed porosity (\(\varepsilon\)), heat conductivity (K), and the heating value of fuel. The estimation process is realized though two steps: feature selection and regression. At first step, the features are ranked according to their importance degree. The well-known Gram–Schmidt orthogonalization feature selection is employed for ranking of effective input parameters. In the second step, extreme learning machine (ELM) and support vector machine (SVM) are utilized as regression cores of forecasting engine. For each feature subset, the estimation accuracy is calculated in order to find the most important feature subset. The obtained results show that the ELM yields the better performance for the prediction of peak temperature and wave velocity as compared to SVM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Dhamrat RS, Ellzey JL (2006) Numerical and experimental study of the conversion of methane to hydrogen in a porous media reactor. Combust Flame 144:698–709. doi:10.1016/j.combustflame.2005.08.038

    Article  Google Scholar 

  2. Smith CH, Pineda DI, Zak CD, Ellzey JL (2013) Conversion of jet fuel and butanol to syngas by filtration combustion. Int J Hydrogen Energy 38:879–889. doi:10.1016/j.ijhydene.2012.10.102

    Article  Google Scholar 

  3. Mujeebu MA, Abdullah MZ, Bakar MZA, Mohamad AA, Muhad RMN, Abdullah MK (2009) Combustion in porous media and its applications—1A comprehensive survey. J Environ Manag 90:2287–2312. doi:10.1016/j.jenvman.2008.10.009

    Article  Google Scholar 

  4. Bingue JP, Saveliev AV, Fridman AA, Kennedy LA (2002) Hydrogen production in ultra-rich filtration combustion of methane and hydrogen sulfide. Int J Hydrogen Energy 27:643–649. doi:10.1016/S0360-3199(01)00174-4

    Article  Google Scholar 

  5. Dixon MJ, Schoegl I, Hull CB, Ellzey JL (2008) Experimental and numerical conversion of liquid heptane to syngas through combustion in porous media. Combust Flame 154:217–231. doi:10.1016/j.combustflame.2008.02.004

    Article  Google Scholar 

  6. Smith CH, Leahey DM, Miller LE, Ellzey JL (2011) Conversion of wet ethanol to syngas via filtration combustion: an experimental and computational investigation. Proc Combust Inst 33:3317–3324. doi:10.1016/j.proci.2010.06.006

    Article  Google Scholar 

  7. Gentillon P, Toledo M (2013) Hydrogen and syngas production from propane and polyethylene. Int J Hydrogen Energy 38:9223–9228. doi:10.1016/j.ijhydene.2013.05.058

    Article  Google Scholar 

  8. Pastore A, Mastorakos E (2011) Syngas production from liquid fuels in a non-catalytic porous burner. Fuel 90:64–76. doi:10.1016/j.fuel.2010.08.003

    Article  Google Scholar 

  9. Gao HB, Qu ZG, Feng XB, Tao WQ (2014) Methane/air premixed combustion in a two-layer porous burner with different foam materials. Fuel 115:154–161. doi:10.1016/j.fuel.2013.06.023

    Article  Google Scholar 

  10. Caro S, Torres D, Toledo M (2015) Syngas production from residual biomass of forestry and cereal plantations using hybrid filtration combustion. Int J Hydrogen Energy 40:2568–2577. doi:10.1016/j.ijhydene.2014.12.102

    Article  Google Scholar 

  11. Toledo M, Vergara E, Saveliev AV (2011) Syngas production in hybrid filtration combustion. Int J Hydrogen Energy 36:3907–3912. doi:10.1016/j.ijhydene.2010.11.060

    Article  Google Scholar 

  12. Araus K, Reyes F, Toledo M (2014) Syngas production from wood pellet using filtration combustion of lean natural gas-air mixtures. Int J Hydrogen Energy 39:7819–7825. doi:10.1016/j.ijhydene.2014.03.140

    Article  Google Scholar 

  13. Toledo M, Gracia F, Caro S, Gómez J, Jovicic V (2016) Hydrocarbons conversion to syngas in inert porous media combustion. Int J Hydrogen Energy 41:5857–5864. doi:10.1016/j.ijhydene.2016.02.065

    Article  Google Scholar 

  14. Ripoll N, Silvestre C, Paredes E, Toledo M (2016) Hydrogen production from algae biomass in rich natural gas-air filtration combustion. Int J Hydrogen Energy. doi:10.1016/j.ijhydene.2016.03.082 (in press)

    Article  Google Scholar 

  15. Guoneng LI, Hao ZHOU, Xinping QIAN, Kefa CEN (2008) Determination of hydrogen production from rich filtration combustion with detailed kinetics based CFD method. Chin J Chem Eng 16(2):292–298. doi:10.1016/S1004-9541(08)60077-4

    Article  Google Scholar 

  16. Smith CH, Pineda DI, Ellzey JL (2013) Syngas production from burner-stabilized methane/air flames: the effect of preheated reactants. Combust Flame 160:557–564. doi:10.1016/j.combustflame.2012.10.022

    Article  Google Scholar 

  17. Araya R, Araus K, Utria K, Toledo M (2014) Optimization of hydrogen production by filtration combustion of natural gas by water addition. Int J Hydrogen Energy 39:7338–7345. doi:10.1016/j.ijhydene.2014.02.113

    Article  Google Scholar 

  18. Mishra VK, Mishra SC, Basu DN (2015) combined mode conduction and radiation heat transfer in a porous medium and estimation of the optical properties of the porous matrix. Numer Heat Transf Part A 67:1119–1135. doi:10.1080/10407782.2014.955358

    Article  Google Scholar 

  19. Bubnovich V, Henríquez L, Gnesdilov N (2007) numerical study of the effect of the diameter of alumina balls on flame stabilization in a porous-medium burner. Numer Heat Transf Part A 52:275–295. doi:10.1080/00397910601149942

    Article  Google Scholar 

  20. Janakiraman VM, Nguyen X, Sterniak J, Assanis D (2015) Identification of the dynamic operating envelope of hcci engines using class imbalance learning. IEEE Trans Neural Netw Learn Syst 26:98–112. doi:10.1109/TNNLS.2014.2311466

    Article  MathSciNet  Google Scholar 

  21. Bamiji Z, Adewole Olatunde A, Abidakun AA Asere (2013) Artificial neural network prediction of exhaust emissions and flame temperature in LPG (liquefied petroleum gas) fueled low swirl burner. Energy 61:606–611. doi:10.1016/j.energy.2013.08.027

    Article  Google Scholar 

  22. Bahadori A, Baghban A, Bahadori M, Lee M, Ahmad Z, Zare M, Abdollahi E (2016) Computational intelligent strategies to predict energy conservation benefits in excess air controlled gas-fired systems. Appl Therm Eng. doi:10.1016/j.applthermaleng.2016.04.005 (in press)

    Article  Google Scholar 

  23. Huang G-b, Zhu Q-y, Siew C-k (2004) Extreme learning machine: a new learning scheme of feed forward neural networks. Proc Int Jt Conf Neural Netw 2:985–990. doi:10.1109/IJCNN.2004.1380068

    Article  Google Scholar 

  24. Mladenović I, Marković D, Milovančević M, Nikolić M (2016) Extreme learning approach with wavelet transform function for forecasting wind turbine wake effect to improve wind farm efficiency. Adv Eng Softw 96:91–95. doi:10.1016/j.advengsoft.2016.02.011

    Article  Google Scholar 

  25. Shamshirband S, Mohammadi K, Yee PL, Petković D, Mostafaeipour A (2015) A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation. Renew Sustain Energy Rev 52:1031–1042. doi:10.1016/j.rser.2015.07.173

    Article  Google Scholar 

  26. Ding L, Xin J, Wang G (2016) An efficient query processing optimization based on ELM in the cloud. Neural Comput Appl 27:35–44. doi:10.1007/s00521-013-1543-3

    Article  Google Scholar 

  27. Shamshirband S, Mohammadi K, Chen H-L, Samy GN, Petković D, Ma C (2015) Daily global solar radiation prediction from air temperatures using kernel extreme learning machine: a case study for Iran. J Atmos Solar Terr Phys 134:109–117. doi:10.1016/j.jastp.2015.09.014

    Article  Google Scholar 

  28. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297. doi:10.1023/A:1022627411411

    Article  MATH  Google Scholar 

  29. Elish OK, Elish MO (2008) Predicting defect-prone software modules using support vector machines. J Syst Softw 81:649–660. doi:10.1016/j.jss.2007.07.040

    Article  Google Scholar 

  30. Petković D, Shamshirband S, Saboohi H, Ang TF, Anuar NB, Rahman ZA, Pavlović NT (2014) Evaluation of modulation transfer function of optical lens system by support vector regression methodologies–a comparative study. Infrared Phys Technol 65:94–102. doi:10.1016/j.infrared.2014.04.005

    Article  Google Scholar 

  31. Shamshirband S, Petković D, Javidnia H, Gani A (2015) Sensor data fusion by support vector regression methodology–a comparative study. IEEE Sens J 15(2):850–854. doi:10.1109/JSEN.2014.2356501

    Article  Google Scholar 

  32. Piri J, Shamshirband S, Petković D, Tong CW, ur Rehman MH (2015) Prediction of the solar radiation on the Earth using support vector regression technique. Infrared Phys Technol 68:179–185. doi:10.1016/j.infrared.2014.12.006

    Article  Google Scholar 

  33. Mohammadi K, Shamshirband S, Tong CW, Arif M, Petković D, Sudheer Ch (2015) A new hybrid support vector machine–wavelet transform approach for estimation of horizontal global solar radiation. Energy Convers Manag 92:162–171. doi:10.1016/j.enconman.2014.12.050

    Article  Google Scholar 

  34. Amini H, Gholami R, Monjezi M, Torabi SR, Zadhesh JZ (2012) Evaluation of flyrock phenomenon due to blasting operation by support vector machine. Neural Comput Appl 21:2077–2085. doi:10.1007/s00521-011-0631-5

    Article  Google Scholar 

  35. Kisi O, Shiri J, Karimi S, Shamshirband S, Motamedi S, Petković D, Hashim R (2015) A survey of water level fluctuation predicting in Urmia Lake using support vector machine with firefly algorithm. Appl Math Comput 270:731–743. doi:10.1016/j.amc.2015.08.085

    Article  Google Scholar 

  36. Shenify M, Danesh AS, Gocić M, Taher RS, Wahab AWA, Gani A, Shamshirband S, Petković D (2016) Precipitation estimation using support vector machine with discrete wavelet transform. Water Resour Manag 30(2):641–652. doi:10.1007/s11269-015-1182-9

    Article  Google Scholar 

  37. Guyon I (2008) Practical feature selection from correlation to causality. In: Mining massive data sets for security. Amsterdam: IOS Press; 2008; 19: 27-43, doi:10.3233/978-1-58603-898-4-27

  38. Stoppiglia H, Dreyfus G, Dubois R, Oussar Y (2003) Ranking a random feature for variable and feature selection. J Mach Learn Res 3:1399–1414

    MATH  Google Scholar 

  39. Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501. doi:10.1016/j.neucom.2005.12.126

    Article  Google Scholar 

  40. Huang G-B, Chen L, Siew C-K (2006) Universal Approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879–892. doi:10.1109/TNN.2006.875977

    Article  Google Scholar 

  41. Huang G-B, Chen L (2007) Convex incremental extreme learning machine. Neurocomputing 70:3056–3062. doi:10.1016/j.neucom.2007.02.009

    Article  Google Scholar 

  42. Wang L (2005) Support vector machines: theory and applications. Springer, Berlin, p 177. doi:10.1007/b95439

    Book  Google Scholar 

  43. Abdoos A, Hemmati M, Abdoos AA (2015) Short term load forecasting using a hybrid intelligent method. Knowl Based Syst 76:139–147. doi:10.1016/j.knosys.2014.12.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Reza Shabanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabanian, S.R., Abdoos, A.A. A hybrid soft computing approach based on feature selection for estimation of filtration combustion characteristics. Neural Comput & Applic 30, 3749–3757 (2018). https://doi.org/10.1007/s00521-017-2956-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-2956-1

Keywords

Navigation