Skip to main content
Log in

Adaptive uncertainty compensation-based nonlinear model predictive control with real-time applications

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, an adaptive model predictive controller (MPC) with a function approximator is proposed to the control of the uncertain nonlinear systems. The proposed adaptive Sigmoid and Chebyshev neural networks-based MPCs (ANN-MPC and ACN-MPC) compensate the system uncertainty and control the system accurately. Using Lyapunov theory, the closed-loop signals of the linearized dynamics and the uncertainty modeling-based model predictive controller have been proved to be bounded. Accuracy of the ANN-MPC and ACN-MPC has been compared with the Runge–Kutta discretization-based nonlinear MPC on an experimental MIMO three-tank liquid-level system where a functional uncertainty is created on its dynamics. Real-time experimental results demonstrate the effectiveness of the proposed controllers. In addition, due to the faster function approximation capability of Chebyshev polynomial networks, ACN-MPC provided better control performance results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Yao B, Tomizuka M (1997) Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form. Automatica 33(5):893–900

    Article  MathSciNet  MATH  Google Scholar 

  2. Adetola V, Guay M (2011) Robust adaptive MPC for constrained uncertain nonlinear systems. Int J Adapt Control Signal Process 25(2):155–167

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhai J-Y, Fei S-M, Mo X-H (2008) Multiple models switching control based on recurrent neural networks. Neural Comput Appl 17(4):365–371

    Article  Google Scholar 

  4. Garcia C, Prett M (1989) Model predictive control: theory and practice. Automatica 25(3):335–348

    Article  MATH  Google Scholar 

  5. Maciejowski JM (2002) Predictive control with constraints. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  6. Camacho EF, Bordons C (2004) Model predictive control. Springer, Berlin

    MATH  Google Scholar 

  7. Garcia GA, Keshmiri SS, Stastny T (2015) Robust and adaptive nonlinear model predictive controller for unsteady and highly nonlinear unmanned aircraft. IEEE Trans Control Syst Technol 23(4):1620–1627

    Article  Google Scholar 

  8. Rawlings JB (2000) Tutorial overview of model predictive control. Control Syst IEEE 20(3):38–52

    Article  Google Scholar 

  9. Yan Z, Wang J (2012) Model predictive control of nonlinear systems with unmodeled dynamics based on feedforward and recurrent neural networks. IEEE Trans Industr Inf 8(4):746–756

    Article  Google Scholar 

  10. Kadirkamanathan V, Niranjan M (1993) A function estimation approach to sequential learning with neural networks. Neural Comput 5(6):954–975

    Article  Google Scholar 

  11. Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signals Syst 2(4):303–314

    Article  MathSciNet  MATH  Google Scholar 

  12. Patra JC, Kot AC (2002) Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks. IEEE Trans Syst Man Cybern Part B (Cybernetics) 32(4):505–511

    Article  Google Scholar 

  13. Beyhan S, Alci M (2009) An orthogonal ARX network for identification and control of nonlinear systems. In: XXII international symposium on information, communication and automation technologies. ICAT 2009, IEEE, pp 1–5

  14. Alci M, Beyhan S (2017) Fuzzy functions with function expansion model for nonlinear system identification. Intell Autom Soft Comput 23(1):87–94

    Article  MATH  Google Scholar 

  15. Draeger A, Engell S, Ranke H (1995) Model predictive control using neural networks. IEEE Control Syst 15(5):61–66

    Article  Google Scholar 

  16. Roubos JA, Mollov S, Babuška R, Verbruggen HB (1999) Fuzzy model-based predictive control using Takagi-Sugeno models. Int J Approx Reason 22(1):3–30

    Article  MathSciNet  MATH  Google Scholar 

  17. Iplikci S (2006) Support vector machines-based generalized predictive control. Int J Robust Nonlinear Control 16(17):843–862

    Article  MathSciNet  MATH  Google Scholar 

  18. Esfanjani RM, Nikravesh SKY (2010) Predictive control for a class of distributed delay systems using Chebyshev polynomials. Int J Comput Math 87(7):1591–1601

    Article  MathSciNet  MATH  Google Scholar 

  19. Garcia GA, Keshmiri S (2013) Online artificial neural network model-based nonlinear model predictive controller for the Meridian UAS. Int J Robust Nonlinear Control 23(15):1657–1681

    MathSciNet  MATH  Google Scholar 

  20. Gil P, Henriques J, Cardoso A, Carvalho P, Dourado A (2014) Affine neural network-based predictive control applied to a distributed solar collector field. IEEE Trans Control Syst Technol 22(2):585–596

    Article  Google Scholar 

  21. Li S, Li Y (2016) Model predictive control of an intensified continuous reactor using a neural network wiener model. Neurocomputing 185:93–104

    Article  Google Scholar 

  22. Ławryńczuk M (2016) Modelling and predictive control of a neutralisation reactor using sparse support vector machine wiener models. Neurocomputing 205:311–328

    Article  Google Scholar 

  23. Wang T, Gao H, Qiu J (2016) A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control. IEEE Trans Neural Netw Learn Syst 27(2):416–425

    Article  MathSciNet  Google Scholar 

  24. Han HG, Zhang L, Hou Y, Qiao JF (2016) Nonlinear model predictive control based on a self-organizing recurrent neural network. IEEE Trans Neural Netw Learn Syst 27(2):402–415

    Article  MathSciNet  Google Scholar 

  25. Ławryńczuk M (2014) Computationally efficient model predictive control algorithms. A neural network approach studies in systems, decision and control, vol 3. doi:10.1007/978-3-319-04229-9

  26. Lin YC et al (2016) A precise BP neural network-based online model predictive control strategy for die forging hydraulic press machine. Neural Comput Appl. doi:10.1007/s00521-016-2556-5

    Google Scholar 

  27. Cetin M, Bahtiyar B, Beyhan S (2016) Artificial neural network based adaptive linear model predictive control. Pamukkale Univ J Eng Sci 22(8):650–658

    Article  Google Scholar 

  28. Yingwei L, Sundararajan N, Saratchandran P (1997) Identification of time-varying nonlinear systems using minimal radial basis function neural networks. IEE Proc Control Theory Appl 144(2):202–208

    Article  MATH  Google Scholar 

  29. Sher CF, Tseng CS, Chen CS (2001) Properties and performance of orthogonal neural network in function approximation. Int J Intell Syst 16(12):1377–1392

    Article  MATH  Google Scholar 

  30. Beyhan S, İtik M (2016) Adaptive fuzzy-Chebyshev network control of a conducting polymer actuator. J Intell Mater Syst Struct 27(8):1019–1029

    Article  Google Scholar 

  31. Yang SS, Tseng CS (1996) An orthogonal neural network for function approximation. IEEE Trans Syst Man Cybern Part B (Cybernetics) 26(5):779–785

    Article  Google Scholar 

  32. Purwar S, Kar IN, Jha AN (2007) On-line system identification of complex systems using Chebyshev neural networks. Appl Soft Comput 7(1):364–372

    Article  Google Scholar 

  33. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing (C ++), 3rd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  34. Iplikci S (2013) Runge–Kutta model-based adaptive predictive control mechanism for nonlinear processes. Trans Inst Meas Control 35(2):166–180

    Article  Google Scholar 

  35. Klančar G, Škrjanc I (2007) Tracking-error model-based predictive control for mobile robots in real time. Robot Auton Syst 55(6):460–469

    Article  Google Scholar 

  36. Mohammadkhani MA, Bayat F, Jalali AA (2014) Design of explicit model predictive control for constrained linear systems with disturbances. Int J Control Autom Syst 12(2):294–301

    Article  Google Scholar 

  37. Amira (2002) DTS 200 laboratory setup three-tank-system. Amira GmbH, Duisburg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meriç Çetin.

Ethics declarations

Conflict of interest

We have received no support or commercial funding for this paper; therefore, we have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çetin, M., Bahtiyar, B. & Beyhan, S. Adaptive uncertainty compensation-based nonlinear model predictive control with real-time applications. Neural Comput & Applic 31 (Suppl 2), 1029–1043 (2019). https://doi.org/10.1007/s00521-017-3068-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3068-7

Keywords