Abstract
The multi-verse optimizer (MVO) is a new evolutionary algorithm inspired by the concepts of multi-verse theory namely, the white/black holes, which represents the interaction between the universes. However, the MVO has some drawbacks, like any other evolutionary algorithms, such as slow convergence and getting stuck in local optima (maximum or minimum). This paper provides a novel chaotic MVO algorithm (CMVO) to avoid these drawbacks, where chaotic maps are used to improve the performance of MVO algorithm. The CMVO algorithm is applied to solve the feature selection problem, in which five benchmark datasets are used to evaluate the performance of CMVO algorithm. The results of CMVO is compared with standard MVO and two other swarm algorithms. The experimental results show that logistic chaotic map is the best chaotic map that increases the performance of MVO, and also the MVO is better than other swarm algorithms.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00521-017-3131-4/MediaObjects/521_2017_3131_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00521-017-3131-4/MediaObjects/521_2017_3131_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00521-017-3131-4/MediaObjects/521_2017_3131_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00521-017-3131-4/MediaObjects/521_2017_3131_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00521-017-3131-4/MediaObjects/521_2017_3131_Fig5_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00521-017-3131-4/MediaObjects/521_2017_3131_Fig6_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00521-017-3131-4/MediaObjects/521_2017_3131_Fig7_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00521-017-3131-4/MediaObjects/521_2017_3131_Fig8_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00521-017-3131-4/MediaObjects/521_2017_3131_Fig9_HTML.gif)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Hancer E, Xue B, Karaboga D, Zhang M (2015) A binary ABC algorithm based on advanced similarity scheme for feature selection. Appl Soft Comput 36:334–348
Esmel ME (2011) A novel image retrieval model based on the most relevant features. Knowl Based Syst 24(1):23–32
Yousef M, Saçar Demirci MD, Khalifa W, Allmer J (2016) Feature selection has a large impact on one-class classification accuracy for micrornas in plants. Adv Bioinform 2016:5670851. doi:10.1155/2016/5670851
Zawbaa HM, Emary E, Grosan C (2016) Feature selection via chaotic antlion optimization. PloS One 11(3):e0150652
Espinosa HEP, Ayala-Solares JR (2016) The power of natural inspiration in control systems. Nat Inspir Comput Control Syst 40:1–10
Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, MHS’95., vol 1. New York, IEEE, pp 39–43
Basturk B, Karaboga D (2006) An artificial bee colony (ABC) algorithm for numeric function optimization. In: IEEE swarm intelligence symposium, vol 8. pp 687–697
Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61
Moradi P, Rostami M (2015) Integration of graph clustering with ant colony optimization for feature selection. Knowl Based Syst 84:144–161
Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98
Zhang Y, Gong D, Hu Y, Zhang W (2015) Feature selection algorithm based on bare bones particle swarm optimization. Neurocomputing 148:150–157
El Aziz MA, Hassanien AE (2016) Modified cuckoo search algorithm with rough sets for feature selection. Neural Comput Appl. doi:10.1007/s00521-016-2473-7
Emary E, Zawbaa HM, Hassanien AE (2016) Binary ant lion approaches for feature selection. Neurocomputing 213:54–65
Anter AM, Hassanien AE, ElSoud MA, Kim T-H (2015) Feature selection approach based on social spider algorithm: case study on abdominal ct liver tumor. In: 2015 Seventh International Conference on Advanced Communication and Networking (ACN). IEEE, pp 89–94
Yamany W, Emary E, Hassanien AE (2015) New rough set attribute reduction algorithm based on grey wolf optimization. In: 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), Springer, Egypt, pp 241–251
Nakamura RYM, Pereira LAM, Costa KA, Rodrigues D, Papa JP, Yang X-S (2012) BBA—a binary bat algorithm for feature selection. In: 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images. IEEE, pp 291–297
Jiang S, Yang S (2017) A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization. IEEE Trans Evolut Comput 21(1):65–82
El Aziz MA, Ewees AA, Hassanien AE (2017) Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation. Exp Syst Appl 83:242–256
Sindhu R, Ngadiran R, Yacob YM, Zahri NAH, Hariharan M (2017) Sine–cosine algorithm for feature selection with elitism strategy and new updating mechanism. Neural Comput Appl. doi:10.1007/s00521-017-2837-7
Zhou Z, Zhu S, Zhang D (2015) A novel K-harmonic means clustering based on enhanced firefly algorithm. In: International Conference on Intelligent Science and Big Data Engineering. Springer International Publishing, pp 140–149
Wang G-G, Guo L, Gandomi AH, Hao G-S, Wang H (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34
Mitić M, Vuković N, Petrović M, Miljković Z (2015) Chaotic fruit fly optimization algorithm. Knowl Based Syst 89:446–458
Yu F, Li W, Tao J, Deng K, Ma L, He F (2017) Estimation of distribution algorithm combined with chaotic sequence for dynamic optimisation problems. Int J Comput Sci Math 8(1):12–19
Adarsh BR, Raghunathan T, Jayabarathi T, Yang X-S (2016) Economic dispatch using chaotic bat algorithm. Energy 96:666–675
Gandomi AH, Yang X-S, Talatahari S, Alavi AH (2013) Firefly algorithm with chaos. Commun Nonlinear Sci Numer Simul 18(1):89–98
Saremi S, Mirjalili S, Lewis A (2014) Biogeography-based optimisation with chaos. Neural Comput Appl 25(5):1077–1097
Gandomi AH, Yang X-S (2014) Chaotic bat algorithm. J Comput Sci 5(2):224–232
Chuang L-Y, Yang C-H, Li J-C (2011) Chaotic maps based on binary particle swarm optimization for feature selection. Appl Soft Comput 11(1):239–248
Li M, Du W, Yuan L (2010) Feature selection of face recognition based on improved chaos genetic algorithm. In: 2010 Third International Symposium on Electronic Commerce and Security (ISECS). IEEE, pp 74–78
Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513
Ellis GFR (2011) Does the multiverse really exist? Sci Am 305(2):38–43
Ning S-L, Wen-Biao Liu (2016) Black hole phase transition in massive gravity. Int J Theor Phys 55(7):3251–3259
Ren B, Zhong W (2011) Multi-objective optimization using chaos based PSO. Inf Technol J 10(10):1908–1916
Bache K, Lichman M (2013) UCI machine learning repository. University of California, Irvine, School of Information and Computer Sciences. http://archive.ics.uci.edu/ml. Accessed 3 Jan 2017
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors state that there are no conflicts of interest, and this study was carried out without any funding sources.
Rights and permissions
About this article
Cite this article
Ewees, A.A., El Aziz, M.A. & Hassanien, A.E. Chaotic multi-verse optimizer-based feature selection. Neural Comput & Applic 31, 991–1006 (2019). https://doi.org/10.1007/s00521-017-3131-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-017-3131-4