Skip to main content
Log in

Electromagnetohydrodynamic nanofluid flow past a porous Riga plate containing gyrotactic microorganism

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Here we have numerically examined the effects of EMHD in flow of nanofluid past a porous Riga surface with gyrotactic microorganism and nanoparticles. Modeling is presented via Grinberg term and a Lorentz force parallel to the wall of a Riga plate. The fluid is electrically conducting, and the Lorentz force decreases exponentially. Using shooting method, the obtained governing nonlinear coupled ODEs are solved. Physical impact of all the pertinent parameters are examined using graphs and tables. In particular, we discussed the behavior of temperature, velocity, motile microorganism density and nanoparticle concentration profile. Nusselt and Sherwood numbers are examined with the help of tables. This analysis motivates the recent researchers, and it provides a platform for further study on nanofluid flow with gyrotactic microorganism past a Riga plate. A comparison is also presented with previously published results as a special case of our study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kuznetsov AV (2011) Bio-thermal convection induced by two different species of microorganisms. Int Commun Heat Mass Transf 38:548–553

    Article  Google Scholar 

  2. Kuznetsov AV (2006) The onset of thermo-bioconvection in a shallow fluid saturated porous layer heated from below in a suspension of oxytactic microorganisms. Eur J Mech B/Fluids 25:223–233

    Article  MathSciNet  MATH  Google Scholar 

  3. Hill NA, Pedley TJ (2005) Bioconvection. Fluid Dyn Res 37:1–20

    Article  MathSciNet  MATH  Google Scholar 

  4. Nield DA, Kuznetsov AV (2006) The onset of bio-thermal convection in a suspension of gyrotactic microorganisms in a fluid layer: oscillatory convection. Int J Therm Sci 45:990–997

    Article  Google Scholar 

  5. Avramenko AA, Kuznetsov AV (2004) Stability of a suspension of gyrotactic microorganisms in superimposed fluid and porous layers. Int Commun Heat Mass Transf 31:1057–1066

    Article  Google Scholar 

  6. Alloui Z, Nguyen TH, Bilgen E (2007) Numerical investigation of thermo-bioconvection in a suspension of gravitactic microorganisms. Int J Heat Mass Transf 50:1435–1441

    Article  MATH  Google Scholar 

  7. Spormann AM (1987) Unusual swimming behavior of a magnetotactic bacterium. FEMS Microbiol Ecol 3:37–45

    Article  Google Scholar 

  8. Pedley TJ, Hill NA, Kessler JO (1988) The growth of bioconvection patterns in a uniform suspension of gyrotactic micro-organisms. J Fluid Mech 195:223–237

    Article  MathSciNet  MATH  Google Scholar 

  9. Hill NA, Hill NA, Kessler JO (1989) Growth of bioconvection patterns in a suspension of gyrotactic micro-organisms in a layer of finite depth. J Fluid Mech 208:509–543

    Article  MathSciNet  MATH  Google Scholar 

  10. Sokolov A, Goldstein RE, Feldchtein FI, Aranson IS (2009) Enhanced mixing and spatial instability in concentrated bacterial suspensions. Phys Rev E 80:031903

    Article  Google Scholar 

  11. Tsai TH, Liou DS, Kuo LS, Chen PH (2009) Rapid mixing between ferro-nanofluid and water in a semi-active Y-type micromixer. Sens Actuators A Phys 153:267–273

    Article  Google Scholar 

  12. Chol SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publications-Fed 231:99–106

    Google Scholar 

  13. Jang SP, Choi SU (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84(21):4316–4318

    Article  Google Scholar 

  14. Sheikholeslami M (2017) Numerical simulation of magnetic nanofluid natural convection in porous media. Phys Lett A 381(5):494–503

    Article  Google Scholar 

  15. Evans W, Fish J, Keblinski P (2006) Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl Phys Lett 88(9):093116

    Article  Google Scholar 

  16. Sheikholeslami M, Ganji DD (2015) Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM. Comput Methods Appl Mech Eng 283:651–663

    Article  MathSciNet  MATH  Google Scholar 

  17. Sheikholeslami M, Rokni HB (2017) Nanofluid two phase model analysis in existence of induced magnetic field. Int J Heat Mass Transf 107:288–299

    Article  Google Scholar 

  18. Sheikholeslami M, Ellahi R, Ashorynejad HR, Domairry G, Hayat T (2014) Effects of heat transfer in flow of nanofluids over a permeable stretching wall in a porous medium. J Comput Theor Nanosci 11:486–496

    Article  Google Scholar 

  19. Zeeshan A, Baig M, Ellahi R, Hayat T (2014) Flow of viscous nanofluid between the concentric cylinders. J Comput Theor Nanosci 11:646–654

    Article  Google Scholar 

  20. Zeeshan A, Ellahi R, Hassan M (2014) Magnetohydrodynamic flow of water/ethylene glycol based nanofluids with natural convection through a porous medium. Eur Phys J Plus 129:1–10

    Article  Google Scholar 

  21. Haq RU, Nadeem S, Khan ZH, Akbar NS (2015) Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Physica E Low-Dimens Syst Nanostruct 65:17–23

    Article  Google Scholar 

  22. Bhatti MM, Abbas T, Rashidi MM, Ali MES, Yang Z (2016) Entropy generation on MHD Eyring–Powell nanofluid through a permeable stretching surface. Entropy 18:224

    Article  MathSciNet  Google Scholar 

  23. Bhatti MM, Rashidi MM (2017) Numerical simulation of entropy generation on MHD nanofluid towards a stagnation point flow over a stretching surface. Int J Appl Comput Math 3(3):2275–2289

    Article  MathSciNet  MATH  Google Scholar 

  24. Geng P, Kuznetsov AV (2004) Effect of small solid particles on the development of bioconvection plumes. Int Commun Heat Mass Transf 31:629–638

    Article  Google Scholar 

  25. Kuznetsov AV (2005) The onset of bioconvection in a suspension of gyrotactic microorganisms in a fluid layer of finite depth heated from below. Int Commun Heat Mass Transf 32:574–582

    Article  Google Scholar 

  26. Kuznetsov AV (2010) The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms. Int Commun Heat Mass Transf 37:1421–1425

    Article  Google Scholar 

  27. Kuznetsov AV (2012) Nanofluid bioconvection: interaction of microorganisms oxytactic upswimming, nanoparticle distribution, and heating/cooling from below. Theor Comput Fluid Dyn 26:291–310

    Article  MATH  Google Scholar 

  28. Kuznetsov AV (2011) Non-oscillatory and oscillatory nanofluid bio-thermal convection in a horizontal layer of finite depth. Eur J Mech B/Fluids 30:156–165

    Article  MATH  Google Scholar 

  29. Khan WA, Makinde OD (2014) MHD nanofluid bioconvection due to gyrotactic microorganisms over a convectively heat stretching sheet. Int J Therm Sci 81:118–124

    Article  Google Scholar 

  30. Khan WA, Makinde OD, Khan ZH (2014) MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip. Int J Heat Mass Transf 74:285–291

    Article  Google Scholar 

  31. Mutuku WN, Makinde OD (2014) Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms. Comput Fluids 95:88–97

    Article  MathSciNet  MATH  Google Scholar 

  32. Gailitis A, Lielausis O (1961) On a possibility to reduce the hydrodynamic resistance of a plate in an electrolyte. Appl Magnetohydrodyn 12:143–146

    Google Scholar 

  33. Avilov VV (1998) Electric and magnetic fields for the Riga plate. Technical Report, FRZ, Rossendorf

  34. Tsinober AB, Shtern AG (1967) Possibility of increasing the flow stability in a boundary layer by means of crossed electric and magnetic fields. Magnetohydrodynamics 3:103–105

    Google Scholar 

  35. Grinberg E (1961) On determination of properties of some potential fields. Appl Magnetohydrodyn 12:147–154

    Google Scholar 

  36. Pantokratoras A, Magyari E (2009) EMHD free-convection boundary-layer flow from a Riga-plate. J Eng Math 64:303–315

    Article  MATH  Google Scholar 

  37. Ahmad A, Asghar S, Afzal S (2016) Flow of nanofluid past a Riga plate. J Magn Magn Mater 402:44–48

    Article  Google Scholar 

  38. Ayub M, Abbas T, Bhatti MM (2016) Inspiration of slip effects on electromagnetohydrodynamics (EMHD) nanofluid flow through a horizontal Riga plate. Eur Phys J Plus 131:1–9

    Article  Google Scholar 

  39. Hayat T, Abbas T, Ayub M, Farooq M, Alsaedi A (2016) Flow of nanofluid due to convectively heated Riga plate with variable thickness. J Mol Liq 222:854–862

    Article  Google Scholar 

  40. Abbas T, Ayub M, Bhatti MM, Rashidi MM, Ali MES (2016) Entropy generation on nanofluid flow through a horizontal Riga plate. Entropy 18:223

    Article  MathSciNet  Google Scholar 

  41. Bhatti MM, Abbas T, Rashidi MM (2016) Effects of thermal radiation and electromagnetohydrodynamic on viscous nanofluid through a Riga plate. Multidiscip Model Mater Struct 12(4):605–618

    Article  Google Scholar 

  42. Abbas T, Bhatti MM, Ayub M (2017) Aiding and opposing of mixed convection Casson nanofluid flow with chemical reactions through a porous Riga plate. J Process Mech Eng. doi:10.1177/0954408917719791

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Abbas.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, T., Hayat, T., Ayub, M. et al. Electromagnetohydrodynamic nanofluid flow past a porous Riga plate containing gyrotactic microorganism. Neural Comput & Applic 31, 1905–1913 (2019). https://doi.org/10.1007/s00521-017-3165-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3165-7

Keywords

Navigation