Skip to main content

Advertisement

Short-term prediction of wind power using a hybrid pseudo-inverse Legendre neural network and adaptive firefly algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a low-complexity pseudo-inverse Legendre neural network (PILNNR) with radial basis function (RBF) units in the hidden layer for accurate wind power prediction on a short-term basis varying from 10- to 60-min interval. The random input weights between the expanded input layer using Legendre polynomials and the RBF units in the hidden layer are optimized with a metaheuristic firefly (FF) algorithm for error minimization and improvement of the learning speed. For comparison, two other forecasting models, namely pseudo-inverse RBF (PIRBFNN-FF) neural network and PILNNR [with tanh functions in the hidden layer (PILNNT-FF)] with input-to-hidden layer weights being optimized by FF algorithm, are also presented in this paper. Also the weights between the hidden layer and the output neuron of these neural models are obtained by Moore–Penrose pseudo-inverse algorithm. Further to improve the stability of the weight learning procedure, the L2-norm-regularized least squares (ridge regression) technique is used. A superior predictive ability test is performed on the three proposed wind power forecasting models using bootstrapping procedure in order to identify the best model. Several case studies using wind power data of the wind farms in the states of Wyoming and California in USA and Sotavento wind farm in Spain are presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Azad HB, Mekhilef S, Ganapathy VG (2014) Long-term wind speed forecasting and general pattern recognition using neural networks. IEEE Trans Sustain Energy 5(2):546–553

    Article  Google Scholar 

  2. Zhang W, Wang J, Wang J, Zhao Z, Tian M (2013) Short-term wind speed forecasting based on a hybrid model. Appl Soft Comput 13(7):3225–3233

    Article  Google Scholar 

  3. Jiang Y, Song Z, Kusiak A (2013) Very short-term wind speed forecasting with Bayesian structural break model. Renew Energy 50:637–647

    Article  Google Scholar 

  4. Poncela M, Poncela P, Perán JR (2013) Automatic tuning of Kalman filters by maximum likelihood methods for wind energy forecasting. Appl Energy 108:349–362

    Article  Google Scholar 

  5. Peng H, Liu F, Yang X (2013) A hybrid strategy of short term wind power prediction. Renew Energy 50:590–595

    Article  Google Scholar 

  6. Soman S, Zareipour H, Malik O, Mandal P (2010) A review of wind power and wind speed forecasting methods with different time horizons. In: Proceedings of NAPS, Sept 2010, pp 1–8

  7. Fan S, Liao J, Yokoyama R, Chen L, Lee W-J (2009) Forecasting the wind generation using a two-stage network based on meteorological information. IEEE Trans Energy Convers 24(2):474–482

    Article  Google Scholar 

  8. Lei M, Shiyan L, Chuanwen J, Hongling L, Yan Z (2009) A review on the forecasting of wind speed and generated power. Renew Sustain Energy Rev 13(4):915–920

    Article  Google Scholar 

  9. Kavasseri RG, Seetharaman K (2009) Day-ahead wind speed forecasting using f-ARIMA models. Renew Energ 34(5):1388–1393

    Article  Google Scholar 

  10. Mabel M, Fernandez E (2009) Estimation of energy yield from wind farms using artificial neural networks. IEEE Trans Energy Convers 24(2):459–464

    Article  Google Scholar 

  11. Kusiak A, Zheng H, Song Z (2009) Short-term prediction of wind farm power: a data mining approach. IEEE Trans Energy Convers 24(1):125–136

    Article  Google Scholar 

  12. Chitsaz H, Amjady N, Zareipour H (2015) Wind power forecast using wavelet neural network trained by clonal selection algorithm. Energy Convers Manag 89(1):588–598

    Article  Google Scholar 

  13. Catalao JPS, Pousinho HMI, Mendes VMF (2011) Hybrid Wavelet-PSO-ANFIS approach for short-term wind power forecasting in Portugal. IEEE Trans Sustain Energy 2(1):50–59

    Google Scholar 

  14. Foley AM, Leahy PG, Marvuglia A, McKeogh El (2012) Current methods and advances in forecasting of wind power generation. Renew Energy 16:1–8

    Article  Google Scholar 

  15. Amjady N, Keynia F, Zareipour H (2011) Short-term wind power forecasting using ridgelet neural network. Electr Power Syst Res 81(12):2099–2107

    Article  Google Scholar 

  16. Amjady N, Keynia F, Zareipour H (2011) Wind power prediction by new forecast engine composed of modified hybrid neural network and enhanced particle swarm optimization. IEEE Trans Sustain Energy 2(3):265–276

    Article  Google Scholar 

  17. Nan X, Li Q, Qiu D, Zhao Y, Guo X (2013) Short-term wind speed syntheses correcting forecasting model and its application. Int J Electr Power Energy Syst 49:264–268

    Article  Google Scholar 

  18. Sideratos G, Hatziargyriou ND (2012) Probabilistic wind power forecasting using radial basis function neural networks. IEEE Trans Power Syst 27:1788–1796

    Article  Google Scholar 

  19. Liu H, Chen C, Tian H, Li Y (2012) A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks. Renew Energy 48:545–556

    Article  Google Scholar 

  20. Amjady N, Daraeepour A, Keynia F (2010) Day-ahead electricity price forecasting by modified relief algorithm and hybrid neural network. IET Gener Transm Distrib 4(3):432–444

    Article  Google Scholar 

  21. Haque AU, Mandal P, Meng J, Srivastava AK, Tseng T-L, Senjyu T (2013) A novel hybrid approach based on wavelet transform and 244 fuzzy ARTMAP networks for predicting wind farm power production. IEEE Trans Ind Appl 49(5):2253–2261

    Article  Google Scholar 

  22. Kavousi-Fard A, Khosravi A, Nahavandi S (2016) A new fuzzy-based combined prediction interval for wind power forecasting. IEEE Trans Power Syst 31(1):18–26

    Article  Google Scholar 

  23. Bhaskar K, Singh SN (2012) AWNN-assisted wind power forecasting using feed-forward neural network. IEEE Trans Sustain Energy 3(2):306–315

    Article  Google Scholar 

  24. Chang W-Y (2013) An RBF neural network combined with OLS algorithm and genetic algorithm for short-term wind power forecasting. J Appl Math 2013:1–10

    MATH  Google Scholar 

  25. Wang N, Er MJ, Han M (2014) Generalized single-hidden layer feed forward networks for regression problems. IEEE Trans Neural Netw and Learn Syst 26(6):1161–1176

    Article  Google Scholar 

  26. Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feed forward neural networks. IEEE Int Jt Conf Neural Netw 2:985–990

    Google Scholar 

  27. Lan Y, Soh YC, Huang GB (2009) Ensemble of online sequential extreme learning machine. Neurocomputing 72(13):3391–3395

    Article  Google Scholar 

  28. Huang GB (2014) An insight into extreme learning machines: random neurons, random features and kernels. Cognit Comput 6(3):376–390

    Article  MathSciNet  Google Scholar 

  29. Li G, Niu P (2013) An enhanced extreme learning machine based on ridge regression for regression. Neural Comput Appl 22(3-4):803–810

    Article  Google Scholar 

  30. MJ Er, Shao Z, Wang N (2013) A systematic method to guide the choice of ridge parameter in ridge extreme learning machine. In: 10th IEEE international conference on control and automation (ICCA), pp 852–857

  31. Pao Y-H, Park G-H, Sobajic DJ (1994) Learning and generalization characteristics of the random vector functional-link net. Neurocomputing 6(2):163–180

    Article  Google Scholar 

  32. Husmeier D, Taylor JG (1998) Neural networks for predicting conditional probability densities: improved training scheme combining EM and RVFL. Neural Netw 11(1):89–116

    Article  Google Scholar 

  33. Igelnik B, Pao YH (1995) Stochastic choice of basis functions in adaptive function approximation and the functional-link net. IEEE Trans Neural Netw 6(6):1320–1329

    Article  Google Scholar 

  34. Zhang L, Suganthan PN (2015) A comprehensive evaluation of random vector functional link networks. Inf Sci 25 Sept 2015 (In Press)

  35. Cai B, Jiang X (2014) A novel artificial neural network method for biomedical prediction based on matrix pseudo-inversion. J Biomed Inform 48:114–121

    Article  Google Scholar 

  36. Patra JC, Bornand C (2010) Nonlinear dynamic system identification using Legendre neural network. In: International joint conference on neural networks (IJCNN), pp 1–7

  37. Bhushan B, Pillai SS (2013) Particle swarm optimization and firefly algorithm: performance analysis. In: 2013 IEEE 3rd international advance computing conference (IACC), pp 746–751

  38. Tian Y, Gao W, Yan S (2012) An improved inertia weight firefly optimization algorithm and application. In: 2012 international conference control engineering and communication technology (ICCECT), pp 64–68

  39. Niknam T, Azizipanah-Abarghooee R, Roosta A (2012) Reserve constrained dynamic economic dispatch: a new fast self-adaptive modified firefly algorithm. IEEE Syst J 6(4):635–646

    Article  Google Scholar 

  40. Guo L, Wang G-G, Wang H, Wang D (2013) An effective hybrid firefly algorithm with Harmony search for global numerical optimization. Sci World J. doi:10.1155/2013/125625

  41. Landberg L, Giebel G, Nielsen HA, Nielsen TS, Madsen H (2003) Short-term prediction—an overview. Wind Energy 6(3):273–280

    Article  Google Scholar 

  42. Ma L, Luan SY, Jiang CW, Liu HL, Zhang Y (2009) A review on the forecasting of wind speed and generated power. Renew Sustain Energy Rev 13(4):915–920

    Article  Google Scholar 

  43. Liu H-C, Hung J-C (2010) Forecasting S&P-100 stock index volatility: the role of volatility asymmetry and distributional assumption in GARCH models. Expert Syst Appl 37:4928–4934

    Article  Google Scholar 

  44. Hansen PR (2005) A test for superior predictive ability. J Bus Econ Stat 23(4):365–380

    Article  MathSciNet  Google Scholar 

  45. Fan S, Hyndman RJ (2012) Short-term load forecasting based on a semi-parametric additive model. IEEE Trans Power Syst 27(1):134–141

    Article  Google Scholar 

  46. Wan C, Xu Z, Wang Y, Dong ZY, Wong KP (2014) A hybrid approach for probabilistic forecasting of electricity price. IEEE Trans Smart Grid 5(1):463–470

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Dash.

Ethics declarations

Conflict of interest

There is no conflict of interest for this paper with any person or organization.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S.P., Dash, P.K. Short-term prediction of wind power using a hybrid pseudo-inverse Legendre neural network and adaptive firefly algorithm. Neural Comput & Applic 31, 2243–2268 (2019). https://doi.org/10.1007/s00521-017-3185-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3185-3

Keywords