Skip to main content
Log in

Undersampled face recognition based on virtual samples and representation classification

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Classifiers such as sparse representation or collaborative representation can get good performance in face recognition. But these methods require a number of train samples in each class to construct the dictionary. On the condition of undersampled train samples, their performance decreases dramatically. A novel method is proposed in this paper to address undersampled face recognition problem. Firstly, virtual face images are generated by principal component analysis and mirror transform. Secondly, the test sample is collaboratively represented by the augmented train samples and is recognized by classifier based on representation. A number of face recognition experiments on three benchmark face database show that the recognition accuracy of our method is greater than that of a similar method, while time efficiency of our method is competitive to similar method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  2. Wang X, Tang X (2005) Subspace analysis using random mixture models. In: IEEE computer society conference on computer vision and pattern recognition, 2005, CVPR 2005. IEEE

  3. Lu J, Tan Y-P (2011) Improved discriminant locality preserving projections for face and palmprint recognition. Neurocomputing 74(18):3760–3767

    Article  Google Scholar 

  4. Fukunaga K (2013) Introduction to statistical pattern recognition. Academic Press, London

    MATH  Google Scholar 

  5. Kafai M, An L, Bhanu B (2014) Reference face graph for face recognition. IEEE Trans Inf Forensics Secur 9(12):2132–2143

    Article  Google Scholar 

  6. Ding C, Xu C, Tao D (2015) Multi-task pose-invariant face recognition. IEEE Trans Image Process 24(3):980–993

    Article  MathSciNet  MATH  Google Scholar 

  7. Moeini A, Moeini H (2015) Real-world and rapid face recognition towards pose and expression variations via feature library matrix. IEEE Trans Inf Forensics Secur 10(5):969–984

    Article  Google Scholar 

  8. Kirby M, Sirovich L (1990) Application of the KL procedure for the characterization of human faces. IEEE Trans Pattern Anal Mach Intell 12(1):103–108

    Article  Google Scholar 

  9. Yang J, Zhang D, Frangi AF, Yang JY (2004) Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 26(1):131–137

    Article  Google Scholar 

  10. Wang H, Chen S, Hu Z, Luo B (2008) Probabilistic two dimensional principal component analysis and its mixture model for face recognition. Neural Comput Appl 17(5–6):541–547. doi:10.1007/s00521-007-0155-1

    Article  Google Scholar 

  11. Sun N, Wang H, Ji Z, Zou C, Zhao L (2008) An efficient algorithm for Kernel two-dimensional principal component analysis. Neural Comput Appl 17(1):59–64

    Article  Google Scholar 

  12. Xu Y, Zhang D, Yang J (2010) A feature extraction method for use with bimodal biometrics. Pattern Recogn 43(3):1106–1115

    Article  MATH  Google Scholar 

  13. Yang W, Sun C, Ricanek K, Yang W, Sun C, Ricanek K (2012) Sequential row–column 2DPCA for face recognition. Neural Comput Appl 21(7):1729–1735. doi:10.1007/s00521-011-0676-5

    Article  Google Scholar 

  14. Zhu Q, Xu Y (2012) Multi-directional two-dimensional PCA with matching score level fusion for face recognition. Neural Comput Appl. doi:10.1007/s00521-012-0851-3

    Google Scholar 

  15. Mika S, Ratsch G, Weston J, Bernhard et al (1999) Fisher discriminant analysis with kernels. In: Proceedings of the IEEE neural networks for signal processing workshop, pp 41–48

  16. Xu Y, Yang J, Jin Z (2004) A novel method for Fisher discriminant analysis. Pattern Recogn 37(2):381–384

    Article  MATH  Google Scholar 

  17. Wang H, Li P, Zhang T (2008) Histogram feature-based Fisher linear discriminant for face detection. Neural Comput Appl 17(1):49–58

    Article  Google Scholar 

  18. Li J, Pan J, Lu Z (2009) Kernel optimization-based discriminant analysis for face recognition. Neural Comput Appl 18(6):603–612

    Article  Google Scholar 

  19. Li JB, Pan JS, Lu ZM (2009) Face recognition using Gabor-based complete Kernel Fisher discriminant analysis with fractional power polynomial models. Neural Comput Appl 18(6):613–621

    Article  Google Scholar 

  20. Zhang B, Qiao Y (2010) Face recognition based on gradient Gabor feature and efficient Kernel Fisher analysis. Neural Comput Appl 19(4):617–623

    Article  Google Scholar 

  21. Liu C, Yang J (2009) ICA color space for pattern recognition. IEEE Trans Neural Netw 20(2):248–257

    Article  Google Scholar 

  22. Zhang L, Gao Q, Zhang D (2008) Directional independent component analysis with tensor representation. In: CVPR 2008, Anchorage, Alaska, U.S., 23–28 June, pp 1–7

  23. Wright J, Yang AY, Ganesh A et al (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  24. Wright J, Ma Y, Mairal J et al (2009) Sparse. Representation for computer vision and pattern recognition. In: Proceedings of IEEE, pp 1–8

  25. Xu Y, Zhang D et al (2011) A two-phase test sample sparse representation method for use with face recognition. IEEE Trans Circuits Syst Video Technol 21(9):1255–1262

    Article  Google Scholar 

  26. Xu Y, Zhu Q (2013) A simple and fast representation-based face recognition method. Neural Comput Appl 22:1543–1549

    Article  Google Scholar 

  27. Tang D, Zhu N, Yu F et al (2014) A novel sparse representation method based on virtual samples for face recognition. Neural Comput Appl 24(3–4):513–519

    Article  Google Scholar 

  28. Zhu N, Li S (2014) A kernel-based sparse representation method for face recognition. Neural Comput Appl 24(3–4):845–852

    Article  Google Scholar 

  29. Kroeker KL (2009) Face recognition breakthrough. Commun ACM 52(8):18–19

    Article  Google Scholar 

  30. Zhang L, Yanga M et al (2011) Sparse representation or collaborative representation: which helps face recognition? In: Proceedings of IEEE international conference on computer vision, pp 471–478

  31. http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

  32. http://cvc.yale.edu/projects/yalefaces/yalefaces.html

  33. www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html

  34. http://cobweb.ecn.purdue.edu/~aleix/aleix_face_DB.html

  35. Wang Y, Wang M, Chen Y et al (2014) A novel virtual samples-based sparse representation method for face recognition. Optik 125(15):3908–3912

    Article  Google Scholar 

  36. Yang M, Zhang L, Yang J, Zhang D (2013) Regularized robust coding for face recognition. IEEE Trans Image Process 22(5):1753–1766

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This article was partly supported by the National Science and Technology Support Program (Nos. 2014BAH11F02, 2014BAH11F01), the National Nature Science Foundation of China (No. 61373163), the Scientific Research Fund of Sichuan Provincial Education Department (No. 15ZA0039), Project of Visual Computing and Virtual Reality Key Laboratory of Sichuan Province (No. PJ2012001) and the scientific research project of Sichuan Normal University (No. 14yb02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yang.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Liu, Y. Undersampled face recognition based on virtual samples and representation classification. Neural Comput & Applic 31, 2447–2453 (2019). https://doi.org/10.1007/s00521-017-3204-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3204-4

Keywords

Navigation