Skip to main content

Advertisement

Log in

Development of novel methods to predict the strength properties of thermally treated sandstone using statistical and soft-computing approach

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The knowledge of thermally modified strength properties is crucial in processes such as underground coal gasification, disposal of radioactive wastes in deep geological reservoirs and restoration of fire-damaged structures. However, due to the unavailability of dedicated laboratory equipment, scientists and engineers need to go across various laboratory facilities for testing their desired sample. Further, it delays the process and increases the cost of the project. Since there is a lack of empirical equations that can provide the strength of a thermally modified rock from the strength at room temperature, new predictive models have been developed using multivariate regression analysis (MVRA), artificial neural network and adaptive neuro-fuzzy inference system (ANFIS), to predict the uniaxial compressive strength (UCS) and tensile strength (TS) of both uncooled (NC) and heat-treated (WC) samples of a fine-grained Indian sandstone that has been widely used as a major building material in most of the Indian monuments. The UCS and TS of NC and WC samples have been predicted from the physical properties, viz. temperature (T), density (D), porosity (P), thermal expansion coefficients (EL and EV) and ultrasonic wave velocities (VP and VS). The performance and prediction efficiency of the models have been compared on the basis of performance indices, namely the correlation coefficient (R2), the mean absolute percentage error, the root mean square error and the variance account for. Based on the comparative study, it was concluded that ANFIS provides a relatively closer estimation as compared to MVRA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Jaeger JC, Cook NG, Zimmerman R (2009) Fundamentals of rock mechanics. Wiley, New York

    Google Scholar 

  2. Goodman RE (1989) Introduction to rock mechanics, vol 2. Wiley, New York

    Google Scholar 

  3. Sirdesai NN, Mahanta B, Singh TN, Ranjith PG (2016) Elastic modulus of thermally treated fine grained sandstone using non-contact laser extensometer. In: Paper presented at the recent advances in rock engineering (RARE 2016), Bengaluru, India

  4. Abdulagatova ZZ, Abdulagatov IM, Emirov SN (2010) Effect of pressure, temperature, and oil-saturation on the thermal conductivity of sandstone up to 250 MPa and 520 K. J Petrol Sci Eng 73(1–2):141–155. doi:10.1016/j.petrol.2010.05.016

    Article  Google Scholar 

  5. Nara Y, Meredith PG, Yoneda T, Kaneko K (2011) Influence of macro-fractures and micro-fractures on permeability and elastic wave velocities in basalt at elevated pressure. Tectonophysics 503(1–2):52–59. doi:10.1016/j.tecto.2010.09.027

    Article  Google Scholar 

  6. Handin J, Hager RV Jr (1957) Experimental deformation of sedimentary rocks under confining pressure: tests at room temperature on dry samples. AAPG Bull 41(1):1–50

    Google Scholar 

  7. Das R, Sirdesai N, Singh T (2017) Analysis of deformational behavior of circular underground opening in soft ground using three-dimensional physical model. In: 51st US rock mechanics/geomechanics symposium, San Francisco, California, USA. American Rock Mechanics Association

  8. Sirdesai NN, Singh TN, Ranjith PG, Singh R (2017) Effect of varied durations of thermal treatment on the tensile strength of red sandstone. Rock Mech Rock Eng 50(1):205–213. doi:10.1007/s00603-016-1047-4

    Article  Google Scholar 

  9. Hajpál M (2002) Changes in sandstones of historical monuments exposed to fire or high temperature. Fire Technol 38(4):373–382

    Article  Google Scholar 

  10. Hajpál M (1999) Burning effect on sandstones of historic buildings and their petrophysical and mineralogical studies. Period Polytech Civ Eng 43(2):207–218

    Google Scholar 

  11. Torok A, Hajpál M (2005) Effect of temperature changes on the mineralogy and physical properties of sandstones. A laboratory study. Int J Restor Build Monum 11(4):211

    Google Scholar 

  12. Tian H, Ziegler M, Kempka T (2014) Physical and mechanical behavior of claystone exposed to temperatures up to 1000 °C. Int J Rock Mech Min Sci 70:144–153. doi:10.1016/j.ijrmms.2014.04.014

    Article  Google Scholar 

  13. Sirdesai NN, Singh TN, Ranjith PG (2017) Thermal alterations in the poro-mechanical characteristic of an Indian sandstone—a comparative study. Eng Geol 226:208–220. doi:10.1016/j.enggeo.2017.06.010

    Article  Google Scholar 

  14. Sirdesai NN, Singh R, Singh TN, Ranjith PG (2015) Numerical and experimental study of strata behavior and land subsidence in an underground coal gasification project. Proc Int Assoc Hydrol Sci 372:455–462. doi:10.5194/piahs-372-455-2015

    Google Scholar 

  15. Burton E, Friedmann J, Upadhye R (2007) Best practices in underground coal gasification. Lawrence Livermore National Laboratory, Livermore

    Google Scholar 

  16. Sirdesai NN, Mahanta B, Ranjith PG, Singh TN (2017) Effects of thermal treatment on physico-morphological properties of Indian fine-grained sandstone. Bull Eng Geol Env. doi:10.1007/s10064-017-1149-6

    Google Scholar 

  17. ASTM (2008) D3967-08. Standard test method for splitting tensile strength of intact rock core specimen. ASTM International, West Conshohocken. www.astm.org. doi:10.1520/D3967-08

  18. Monjezi M, Khoshalan HA, Razifard M (2012) A neuro-genetic network for predicting uniaxial compressive strength of rocks. Geotech Geol Eng 30(4):1053–1062

    Article  Google Scholar 

  19. Mahanta B, Sirdesai N, Singh TN, Ranjith PG (2017) Experimental study of strain rate sensitivity to fracture toughness of rock using flattened Brazilian disc. Proc Eng 191:256–262. doi:10.1016/j.proeng.2017.05.179

    Article  Google Scholar 

  20. Singh V, Singh D, Singh T (2001) Prediction of strength properties of some schistose rocks from petrographic properties using artificial neural networks. Int J Rock Mech Min Sci 38(2):269–284

    Article  Google Scholar 

  21. Sonmez H, Tuncay E, Gokceoglu C (2004) Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara Agglomerate. Int J Rock Mech Min Sci 41(5):717–729

    Article  Google Scholar 

  22. Sonmez H, Gokceoglu C, Medley E, Tuncay E, Nefeslioglu H (2006) Estimating the uniaxial compressive strength of a volcanic bimrock. Int J Rock Mech Min Sci 43(4):554–561

    Article  Google Scholar 

  23. Zorlu K, Gokceoglu C, Ocakoglu F, Nefeslioglu H, Acikalin S (2008) Prediction of uniaxial compressive strength of sandstones using petrography-based models. Eng Geol 96(3):141–158

    Article  Google Scholar 

  24. Cevik A, Sezer EA, Cabalar AF, Gokceoglu C (2011) Modeling of the uniaxial compressive strength of some clay-bearing rocks using neural network. Appl Soft Comput 11(2):2587–2594

    Article  Google Scholar 

  25. Gokceoglu C, Zorlu K (2004) A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock. Eng Appl Artif Intell 17(1):61–72

    Article  Google Scholar 

  26. Yasar E, Erdogan Y (2004) Correlating sound velocity with the density, compressive strength and Young’s modulus of carbonate rocks. Int J Rock Mech Min Sci 41(5):871–875

    Article  Google Scholar 

  27. Singh TN, Sinha S, Singh VK (2007) Prediction of thermal conductivity of rock through physico-mechanical properties. Build Environ 42(1):146–155. doi:10.1016/j.buildenv.2005.08.022

    Article  Google Scholar 

  28. Gokceoglu C, Zorlu K, Ceryan S, Nefeslioglu H (2009) A comparative study on indirect determination of degree of weathering of granites from some physical and strength parameters by two soft computing techniques. Mater Charact 60(11):1317–1327

    Article  Google Scholar 

  29. Baykasoğlu A, Güllü H, Çanakçı H, Özbakır L (2008) Prediction of compressive and tensile strength of limestone via genetic programming. Expert Syst Appl 35(1):111–123

    Article  Google Scholar 

  30. Sharma L, Vishal V, Singh T (2017) Developing novel models using neural networks and fuzzy systems for the prediction of strength of rocks from key geomechanical properties. Measurement 102:158–169

    Article  Google Scholar 

  31. Armaghani DJ, Safari V, Fahimifar A, Mohd Amin MF, Monjezi M, Mohammadi MA (2017) Uniaxial compressive strength prediction through a new technique based on gene expression programming. Neural Comput Appl. doi:10.1007/s00521-017-2939-2

    Google Scholar 

  32. Hajihassani M, Marto A, Khezri N, Kalatehjari R (2015) Indirect measure of thermal conductivity of rocks through adaptive neuro-fuzzy inference system and multivariate regression analysis. Measurement 67:71–77. doi:10.1016/j.measurement.2015.02.009

    Article  Google Scholar 

  33. Yagiz S, Sezer EA, Gokceoglu C (2012) Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks. Int J Numer Anal Meth Geomech 36(14):1636–1650. doi:10.1002/nag.1066

    Article  Google Scholar 

  34. Cheshomi A, Sheshde EA (2013) Determination of uniaxial compressive strength of microcrystalline limestone using single particles load test. J Petrol Sci Eng 111:121–126

    Article  Google Scholar 

  35. Dehghan S, Sattari G, Chelgani SC, Aliabadi M (2010) Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks. Min Sci Technol (China) 20(1):41–46

    Article  Google Scholar 

  36. Armaghani DJ, Mohamad ET, Momeni E, Monjezi M, Narayanasamy MS (2016) Prediction of the strength and elasticity modulus of granite through an expert artificial neural network. Arab J Geosci 9(1):48

    Article  Google Scholar 

  37. Singh R, Umrao RK, Ahmad M, Ansari M, Sharma L, Singh T (2017) Prediction of geomechanical parameters using soft computing and multiple regression approach. Measurement 99:108–119

    Article  Google Scholar 

  38. Aboutaleb S, Behnia M, Bagherpour R, Bluekian B (2017) Using non-destructive tests for estimating uniaxial compressive strength and static Young’s modulus of carbonate rocks via some modeling techniques. Bull Eng Geol Environ 1–12. doi:10.1007/s10064-017-1043-2

  39. Yesiloglu-Gultekin N, Gokceoglu C, Sezer E (2013) Prediction of uniaxial compressive strength of granitic rocks by various nonlinear tools and comparison of their performances. Int J Rock Mech Min Sci 62:113–122

    Article  Google Scholar 

  40. Singh R, Vishal V, Singh T, Ranjith P (2013) A comparative study of generalized regression neural network approach and adaptive neuro-fuzzy inference systems for prediction of unconfined compressive strength of rocks. Neural Comput Appl 23(2):499–506

    Article  Google Scholar 

  41. Singh R, Kainthola A, Singh T (2012) Estimation of elastic constant of rocks using an ANFIS approach. Appl Soft Comput 12(1):40–45

    Article  Google Scholar 

  42. Sharma L, Vishal V, Singh T (2017) Predicting CO2 permeability of bituminous coal using statistical and adaptive neuro-fuzzy analysis. J Nat Gas Sci Eng 42:216–225

    Article  Google Scholar 

  43. Gautam PK, Verma AK, Maheshwar S, Singh TN (2015) Thermomechanical analysis of different types of sandstone at elevated temperature. Rock Mech Rock Eng 49(5):1985–1993. doi:10.1007/s00603-015-0797-8

    Article  Google Scholar 

  44. CGWB (2010) Groundwater scenario, Dholpur District—western region of Jaipur. Ministry of Water Resources, Government of India, Jaipur

    Google Scholar 

  45. DMG-Rajasthan (2006) Sandstone—Rajasthan. www.dmg-raj.org/sandstone.html. Accessed 15 Aug 2015

  46. UNESCO (2015) India—UNESCO World Heritage Centre. http://whc.unesco.org/en/statesparties/in. Accessed 1 May 2016

  47. Ministry of Coal GoI (2015) Steps for development of underground coal gasification technology. Press Information Bureau. http://pib.nic.in/newsite/PrintRelease.aspx?relid=132935. Accessed 07 Feb 2017

  48. ISRM (1981) Rock characterization testing and monitoring—ISRM suggested methods. Pergamon Press for the Commission of Testing Methods, Oxford

    Google Scholar 

  49. Tian H, Kempka T, Yu S, Ziegler M (2015) Mechanical properties of sandstones exposed to high temperature. Rock Mech Rock Eng 49(1):321–327. doi:10.1007/s00603-015-0724-z

    Article  Google Scholar 

  50. Den’gina NI, Kazak VN, Pristash VV (1993) Changes in rocks at high-temperatures. J Min Sci 29(5):472–477

    Article  Google Scholar 

  51. Yavuz H, Demirdag S, Caran S (2010) Thermal effect on the physical properties of carbonate rocks. Int J Rock Mech Min Sci 47(1):94–103. doi:10.1016/j.ijrmms.2009.09.014

    Article  Google Scholar 

  52. Sharma LK, Singh TN (2017) Regression-based models for the prediction of unconfined compressive strength of artificially structured soil. Engineering with Computers. doi:10.1007/s00366-017-0528-8

    Google Scholar 

  53. Yilmaz I, Yuksek G (2009) Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN, and ANFIS models. Int J Rock Mech Min Sci 46(4):803–810. doi:10.1016/j.ijrmms.2008.09.002

    Article  Google Scholar 

  54. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353. doi:10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  55. Jang J-S (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685

    Article  Google Scholar 

  56. Loukas YL (2001) Adaptive neuro-fuzzy inference system: an instant and architecture-free predictor for improved QSAR studies. J Med Chem 44(17):2772–2783

    Article  Google Scholar 

  57. Sharma L, Singh R, Umrao R, Sharma K, Singh T (2017) Evaluating the modulus of elasticity of soil using soft computing system. Eng Comput 33(3):497–507

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Kant Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirdesai, N.N., Singh, A., Sharma, L.K. et al. Development of novel methods to predict the strength properties of thermally treated sandstone using statistical and soft-computing approach. Neural Comput & Applic 31, 2841–2867 (2019). https://doi.org/10.1007/s00521-017-3233-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3233-z

Keywords