Abstract
In this study, energy demand estimation (EDE) was implemented by a proposed hybrid gravitational search–teaching–learning-based optimization method with developed linear, quadratic and exponential models. Five indicators: population, gross domestic product as the socio-economic indicators and installed power, gross electric generation and net electric consumption as the electrical indicators, were used in analyses between 1980 and 2014. First, the developed models were trained by the data between 1980 and 2010, and then, accuracy of the models was tested by the data between 2011 and 2014. It is found that the obtained results with the proposed method are coherent with the training data with correlation coefficients in three models as 0.9959, 0.9964 and 0.9971, respectively. Root mean square error values were computed 1.8338, 1.7193 and 1.5497, respectively, and mean absolute percentage errors were obtained as 2.1141, 2.0026 and 1.6792%, respectively, in the three models. These values calculated by the proposed method are better than the results of standard gravitational search algorithm and teaching–learning-based optimization methods and also classical regression analysis. Low, expected and high scenarios were proposed in terms of various changing rates between 0.5 and 1.5% difference in socio-economic and electrical indicators. Those scenarios were used in the EDE study of Turkey between 2015 and 2030 for a comparison with other related studies in the literature. By the proposed method, the strategy in energy importation can be regulated and thus more realistic energy policies can be made.








Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Lee YS, Tong LI (2011) Forecasting energy consumption using a grey model improved by incorporating genetic programming. Energy Convers Manag 52(1):147–152. doi:10.1016/j.enconman.2010.06.053
Apergis N, Payne JE (2010) Renewable energy consumption and economic growth: evidence from a panel of OECD countries. Energy Policy 38(1):656–660. doi:10.1016/j.enpol.2009.09.002
Dunkerley J (1982) Estimation of energy demand: the developing countries. Energy J 3(2):79–99
The World Bank (WB) (2015) Turkey overview report. http://www.worldbank.org/en/country/turkey. Accessed 17 Nov 2016
International Energy Agency (IEA) (2015) World energy outlook international special report 2015: energy and climate change. https://www.iea.org/publications/freepublications/publication/WEO2015SpecialReportonEnergyandClimateChange.pdf. Accessed 17 Aug 2016
Ministry of Energy and Natural Resources: General Directorate of Electricity Affairs. Balance Sheets (GDE) (2014) http://www.eigm.gov.tr/en-US/Balance-Sheets. Accessed 17 Nov 2016
Turkish Statistical Institute (TURKSTAT) (2014) Bulletins. http://www.tuik.gov.tr/PreHaberBultenleri.do?id=18616. Accessed 17 Nov 2016
Turkish Electricity Transmission Company (TETC) (2014) Turkish power system. http://www.teias.gov.tr/FaaliyetRaporlari/faaliyetrap2014/2014ing.pdf. Accessed 17 Nov 2016
Turkish Statistical Institute (TURKSTAT) (2015) Main statistics, gross domestic product by production approach. http://www.turkstat.gov.tr/UstMenu.do?metod=temelist. Accessed 17 Nov 2016
Ministry of Energy and Natural Resources (MENR) (2012) Blue books on energy. http://www.enerji.gov.tr/File/?path=ROOT%2f1%2fDocuments%2fMavi%20Kitap%2fMavi_Kitap_2012.pdf. Accessed 17 Nov 2016
Republic of Turkey Ministry of Development (MOD) (2016). Medium-term programme 2014–2016. http://www.mod.gov.tr/Pages/MediumTermPrograms.aspx. Accessed 16 Nov 2016
Turkish Statistical Institute (TURKSTAT) (2013). Main statistics, population and demography, population projections, population by years (2013–2075). http://www.turkstat.gov.tr/UstMenu.do?metod=temelist. Accessed 16 Nov 2016
Turkish Electricity Transmission Company (TETC) (2014) Statistics report 2014. http://www.teias.gov.tr/istatistikler.aspx. Accessed 16 Nov 2016
Kankal M, Akpinar A, Komurcu MI, Ozsahin TS (2011) Modeling and forecasting of Turkey’s energy consumption using socio-economic and demographic variables. Appl Energy 88(5):1927–1939. doi:10.1016/j.apenergy.2010.12.005
Gorucu FB (2004) Evaluation and forecasting of gas consumption by statistical analysis. Energy Sources 26(3):267–276. doi:10.1080/00908310490256617
Suganthi L, Samuel AA (2012) Energy models for demand forecasting—a review. Renew Sustain Energy Rev 16(2):1223–1240. doi:10.1016/j.rser.2011.08.014
Tunç M, Çamdali Ü, Parmaksizoğlu C (2006) Comparison of Turkey’s electrical energy consumption and production with some European countries and optimization of future electrical power supply investments in Turkey. Energy Policy 34(1):50–59. doi:10.1016/j.enpol.2004.04.027
Fumo N, Rafe Biswas MA (2015) Regression analysis for prediction of residential energy consumption. Renew Sustain Energy Rev 47:332–343. doi:10.1016/j.rser.2015.03.035
Geem ZW, Roper WE (2009) Energy demand estimation of South Korea using artificial neural network. Energy Policy 37(10):4049–4054. doi:10.1016/j.enpol.2009.04.049
Pao HT (2006) Comparing linear and nonlinear forecasts for Taiwan’s electricity consumption. Energy 31(12):2129–2141. doi:10.1016/j.energy.2005.08.010
Ekonomou L (2010) Greek long-term energy consumption prediction using artificial neural networks. Energy 35(2):512–517. doi:10.1016/j.energy.2009.10.018
Limanond T, Jomnonkwao S, Srikaew A (2011) Projection of future transport energy demand of Thailand. Energy Policy 39(5):2754–2763. doi:10.1016/j.enpol.2011.02.045
Oludolapo OA, Jimoh AA, Kholopane PA (2012) Comparing performance of MLP and RBF neural network models for predicting South Africa’s energy consumption. J Energy South Afr 23(3):40–46
Gunay ME (2016) Forecasting annual gross electricity demand by artificial neural networks using predicted values of socio-economic indicators and climatic conditions: case of Turkey. Energy Policy 90:92–101. doi:10.1016/j.enpol.2015.12.019
Es HA, Kalender FY, Hamzacebi C (2014) Forecasting the net energy demand of Turkey by artificial neural networks. J Fac Eng Archit Gazi Univ 29(3):495–504. doi:10.17341/gummfd.41725
Kavaklioglu K, Ceylan H, Ozturk HK, Canyurt CE (2009) Modeling and prediction of Turkey’s electricity consumption using artificial neural networks. Energy Convers Manag 50(11):2719–2727. doi:10.1016/j.enconman.2009.06.016
Sozen A, Akcayol MA, Arcaklioglu E (2006) Forecasting net energy consumption using artificial neural network. Energy Source B 1(2):147–155. doi:10.1080/009083190881562
Hamzacebi C (2007) Forecasting of Turkey’s net electricity energy consumption on sectoral bases. Energy Policy 35(3):2009–2016. doi:10.1016/j.enpol.2006.03.014
Sozen A, Arcaklioglu E (2007) Prospects for future projections of the basic energy sources in Turkey. Energy Source B 2(2):183–201. doi:10.1080/15567240600813930
Murat YS, Ceylan H (2006) Use of artificial neural networks for transport energy demand modeling. Energy Policy 34(17):3165–3172. doi:10.1016/j.enpol.2005.02.010
Canyurt OE, Ozturk HK, Hepbasli A, Utlu Z (2005) Estimating the Turkish residential-commercial energy output based on genetic algorithm (GA) approaches. Energy Policy 33(8):1011–1019. doi:10.1016/j.enpol.2003.11.001
Canyurt CE, Ozturk HK (2006) Three different applications of genetic algorithm (GA) search techniques on oil demand estimation. Energy Convers Manag 47(18–19):3138–3148. doi:10.1016/j.enconman.2006.03.009
Canyurt CE, Ozturk HK (2008) Application of genetic algorithm (GA) technique on demand estimation of fossil fuels in Turkey. Energy Policy 36(7):2562–2569. doi:10.1016/j.enpol.2008.03.010
Ceylan H, Ozturk HK (2004) Estimating energy demand of Turkey based on economic indicators using genetic algorithm approach. Energy Convers Manag 45(15–16):2525–2537. doi:10.1016/j.enconman.2003.11.010
Ceylan H, Ozturk HK, Hepbasli A, Utlu Z (2005) Estimating energy and exergy production and consumption values using three different genetic algorithm approaches. part 2: application and scenarios. Energy Sources 27(7):629–639. doi:10.1080/00908310490448631
Ozturk HK, Ceylan H, Hepbasli A, Utlu Z (2004) Estimating petroleum exergy production and consumption using vehicle ownership and GDP based on genetic algorithm approach. Renew Sustain Energy Rev 8(3):289–302. doi:10.1016/j.rser.2003.10.004
Ozturk HK, Ceylan H, Canyurt OE, Hepbasli A (2005) Electricity estimation using genetic algorithm approach: a case study of Turkey. Energy 30(7):1003–1012. doi:10.1016/j.energy.2004.08.008
Haldenbilen S, Ceylan H (2005) Genetic algorithm approach to estimate transport energy demand in Turkey. Energy Policy 33(1):89–98. doi:10.1016/S0301-4215(03)00202-7
Çunkaş M, Taşkiran U (2011) Turkey’s electricity consumption forecasting using genetic programming. Energy Sources B 6(4):406–416. doi:10.1080/15567240903047558
Toksari MD (2007) Ant colony optimization approach to estimate energy demand of Turkey. Energy Policy 35(8):3984–3990. doi:10.1016/j.enpol.2007.01.028
Toksari MD (2009) Estimating the net electricity energy generation and demand using the ant colony optimization approach: case of Turkey. Energy Policy 37(3):1181–1187. doi:10.1016/j.enpol.2008.11.017
Unler A (2008) Improvement of energy demand forecasts using swarm intelligence: the case of Turkey with projections to 2025. Energy Policy 36(6):1937–1944. doi:10.1016/j.enpol.2008.02.018
Kiran MS, Ozceylan E, Gunduz M, Paksoy T (2012) Swarm intelligence approaches to estimate electricity energy demand in Turkey. Knowl Based Syst 36:93–103. doi:10.1016/j.knosys.2012.06.009
Gürbüz F, Öztürk C, Pardalos P (2013) Prediction of electricity energy consumption of Turkey via artificial bee colony: a case study. Energy Syst 4(3):289–300. doi:10.1007/s12667-013-0079-z
Ceylan H, Ceylan H, HaIdenbilen S, Baskan O (2008) Transport energy modeling with meta-heuristic harmony search algorithm, an application to Turkey. Energy Policy 36(7):2527–2535. doi:10.1016/j.enpol.2008.03.019
Askarzadeh A (2014) Comparison of particle swarm optimization and other metaheuristics on electricity demand estimation: a case study of Iran. Energy 72:484–491. doi:10.1016/j.energy.2014.05.070
Behrang MA, Assareh E, Ghalambaz M, Assari MR, Noghrehabadi AR (2011) Forecasting future oil demand in Iran using GSA (Gravitational Search Algorithm). Energy 36(9):5649–5654. doi:10.1016/j.energy.2011.07.002
Amjadi MH, Nezamabadi-Pour H, Farsangi MM (2010) Estimation of electricity demand of Iran using two heuristic algorithms. Energy Convers Manag 51(3):493–497. doi:10.1016/j.enconman.2009.10.013
Assareh E, Behrang MA, Assari MR, Ghanbarzadeh A (2010) Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran. Energy 35(12):5223–5229. doi:10.1016/j.energy.2010.07.043
Toksari MD (2016) A hybrid algorithm of ant colony optimization (ACO) and iterated local search (ILS) for estimating electricity domestic consumption: case of Turkey. Int J Electr Power 78:776–782. doi:10.1016/j.ijepes.2015.12.032
Uzlu E, Kankal M, Akpinar A, Dede T (2014) Estimates of energy consumption in Turkey using neural networks with the teaching–learning-based optimization algorithm. Energy 75:295–303. doi:10.1016/j.energy.2014.07.078
Kankal M, Uzlu E (2016) Neural network approach with teaching–learning-based optimization for modeling and forecasting long-term electric energy demand in Turkey. Neural Comput Appl. doi:10.1007/s00521-016-2409-2
Kiran MS, Ozceylan E, Gunduz M, Paksoy T (2012) A novel hybrid approach based on particle swarm optimization and ant colony algorithm to forecast energy demand of Turkey. Energy Convers Manag 53(1):75–83. doi:10.1016/j.enconman.2011.08.004
Daş GS (2016) Forecasting the energy demand of Turkey with a NN based on an improved particle swarm optimization. Neural Comput Appl. doi:10.1007/s00521-016-2367-8
Uzlu E, Akpınar A, Özturk HT, Nacar S, Kankal M (2014) Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey. Energy 69:638–647. doi:10.1016/j.energy.2014.03.059
Jiang XL, Ling HF, Yan J, Li B, Li Z (2013) Forecasting electrical energy consumption of equipment maintenance using neural network and particle swarm optimization. Math Probl Eng. doi:10.1155/2013/194730
Yu SW, Wang K, Wei YM (2015) A hybrid self-adaptive particle swarm optimization-genetic algorithm-radial basis function model for annual electricity demand prediction. Energy Convers Manag 91:176–185. doi:10.1016/j.enconman.2014.11.059
Yu SW, Wei YM, Wang K (2012) A PSO–GA optimal model to estimate primary energy demand of China. Energy Policy 42:329–340. doi:10.1016/j.enpol.2011.11.090
Yu SW, Wei YM, Wang K (2012) China’s primary energy demands in 2020: predictions from an MPSO-RBF estimation model. Energy Convers Manag 61:59–66. doi:10.1016/j.enconman.2012.03.016
Ghanbari A, Kazemi SMR, Mehmanpazir F, Nakhostin MM (2013) A cooperative ant colony optimization-genetic algorithm approach for construction of energy demand forecasting knowledge-based expert systems. Knowl Based Syst 39:194–206. doi:10.1016/j.knosys.2012.10.017
Canyurt OE, Ceylan H, Ozturk HK, Hepbasli A (2004) Energy demand estimation based on two-different genetic algorithm approaches. Energy Sources 26(14):1313–1320. doi:10.1080/00908310490441610
Bilgili M, Sahin B, Yasar A, Simsek E (2012) Electric energy demands of Turkey in residential and industrial sectors. Renew Sustain Energy Rev 16(1):404–414. doi:10.1016/j.rser.2011.08.005
Sozen A, Arcaklioglu E (2007) Prediction of net energy consumption based on economic indicators (GNP and GDP) in Turkey. Energy Policy 35(10):4981–4992. doi:10.1016/j.enpol.2007.04.029
Sozen A, Arcaklioglu E, Ozkaymak M (2005) Turkey’s net energy consumption. Appl Energy 81(2):209–221. doi:10.1016/j.apenergy.2004.07.001
Geem ZW (2011) Transport energy demand modeling of South Korea using artificial neural network. Energy Policy 39(8):4644–4650. doi:10.1016/j.enpol.2011.05.008
Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248. doi:10.1016/j.ins.2009.03.004
Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315. doi:10.1016/j.cad.2010.12.015
Rashedi E, Nezamabadi-Pour H, Saryazdi S (2011) Filter modeling using gravitational search algorithm. Eng Appl Artif Intel 24(1):117–122. doi:10.1016/j.engappai.2010.05.007
Rao RV, Savsani VJ, Vakharia DP (2012) Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf Sci 183(1):1–15. doi:10.1016/j.ins.2011.08.006
Miroslaw M, Mohan G, Howard O, Mihir P (1989) A hybrid algorithm technique. The University of Texas at Austin, Texas, U.S.A, Department of Electrical and Computer Engineering, Texas
Cui Y, Geng Z, Zhu Q, Han Y (2017) Review: multi-objective optimization methods and application in energy saving. Energy 125:681–704. doi:10.1016/j.energy.2017.02.174
Venkata Rao R, Kalyankar VD (2013) Multi-pass turning process parameter optimization using teaching–learning-based optimization algorithm. Sci Iran 20(3):967–974. doi:10.1016/j.scient.2013.01.002
Toğan V (2012) Design of planar steel frames using teaching–learning based optimization. Eng Struct 34:225–232. doi:10.1016/j.engstruct.2011.08.035
Uzlu E, Kömürcü Mİ, Kankal M, Dede T, Öztürk HT (2014) Prediction of berm geometry using a set of laboratory tests combined with teaching–learning-based optimization and artificial bee colony algorithms. Appl Ocean Res 48:103–113. doi:10.1016/j.apor.2014.08.002
Bayram A, Uzlu E, Kankal M, Dede T (2015) Modeling stream dissolved oxygen concentration using teaching–learning based optimization algorithm. Environ Earth Sci 73(10):6565–6576. doi:10.1007/s12665-014-3876-3
Meade N (1983) Industrial and business forecasting methods, Lewis, C.D., Borough Green, Sevenoaks, Kent: butterworth. J Forecast 2(2):194–196. doi:10.1002/for.3980020210
Republic of Turkey Ministry of Development (MOD) (2016) Medium-term programme 2016–2018. http://www.mod.gov.tr/Pages/MediumTermPrograms.aspx. Accessed 16 Nov 2016
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
There is no conflict of interest in this study.
Rights and permissions
About this article
Cite this article
Tefek, M.F., Uğuz, H. & Güçyetmez, M. A new hybrid gravitational search–teaching–learning-based optimization method for energy demand estimation of Turkey. Neural Comput & Applic 31, 2939–2954 (2019). https://doi.org/10.1007/s00521-017-3244-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-017-3244-9