Skip to main content

Advertisement

Log in

An optimized SVM-k-NN currency exchange forecasting model for Indian currency market

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper considers the prediction of currency exchange rate, volatility, and momentum prediction by exploring the capabilities of Support Vector Machine (SVM) and k-Nearest Neighbor (k-NN). In this work, the parameters such as penalty C and kernel \(\gamma\) of SVM have been tuned with few optimization techniques such as random search, grid search, genetic algorithm, particle swarm optimization, ant colony optimization, firefly optimization, and BAT optimization algorithm. The final prediction has been obtained using k-NN by searching the neighborhood elements for either profit or loss. The performance of the proposed system has been tested with the Indian rupees with dollar (USD), British Pound (GBP), and Euro (EUR) for daily, weekly, and monthly in advance for prediction of currency exchange rate, volatility, and momentum in the currency market. The model BAT-SVM-k-NN has been found with the best forecasting ability based on performance measures such as mean absolute percentage error, root mean square error, mean squared forecast error, root mean squared forecast error, and mean absolute forecast error in comparison with other optimization techniques mentioned above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Galeshchuk S (2016) Neural networks performance in exchange rate prediction. Neurocomputing 172:446–452

    Article  Google Scholar 

  2. Chen JH, Kuo IH (2016) The study of exchange rate variability and pressures for Asian currency unit. Asia Pac Manag Rev 21(3):1–7

    Google Scholar 

  3. Rivera RA, Rendon MV, Rodriguez-Ortiz JJ (2015) Genetic algorithms and Darwinian approaches in financial applications: a survey. Expert Syst Appl 42:7684–7697

    Article  Google Scholar 

  4. Huang C-F, Hsu C-J, Chen C-C, Chang BR, Li C-A (2015) An intelligent model for pairs trading using genetic algorithms. Comput Intell Neurosci 501:939606

    Google Scholar 

  5. Araujo RDA, Ferreira TA (2013) A morphological-rank-linear evolutionary method for stock market prediction. Inf Sci 237:3–17

    Article  MathSciNet  MATH  Google Scholar 

  6. da Costa Moraes MB, Nagano MS (2014) Evolutionary models in cash management policies with multiple assets. Econ Model 39:1–7

    Article  Google Scholar 

  7. Donate JP, Cortez P (2014) Evolutionary optimization of sparsely connected and time-lagged neural networks for time series forecasting. Appl Soft Comput 23:432–443

    Article  Google Scholar 

  8. Hochreiter R, Wozabal D (2010) Evolutionary estimation of a coupled Markov chain credit risk model. Nat Comput Comput Finance 293:31–44

    Article  MATH  Google Scholar 

  9. Ding Z, Granger CWJ (1996) Modelling volatility persistence of speculative returns: a new approach. J Econom 73:185–215

    Article  MATH  Google Scholar 

  10. Ding Z, Granger CWJ, Engle RF (1993) A long memory property of stock market returns and a new model. J Empir Finance 1:83–106

    Article  Google Scholar 

  11. Pham HT, Yang BS (2010) Estimation and forecasting of machine health condition using ARMA/GARCH model. Mech Syst Signal Process 24:546–558

    Article  Google Scholar 

  12. Lin F, Liang D, Yeh CC, Huang JC (2014) Novel feature selection methods to financial distress prediction. Expert Syst Appl 41:2472–2483

    Article  Google Scholar 

  13. Rojasa I, Valenzuelab O, Rojasa F, Guillena A, Herreraa LJ, Pomaresa H, Arquezb L, Pasadas M (2008) Soft-computing techniques and ARMA model for time series prediction. Neurocomputing 71:519–537

    Article  Google Scholar 

  14. Anastasakis L, Mort N (2009) Exchange rate forecasting using a combined parametric and nonparametric self-organising modelling approach. Expert Syst Appl 36:12001–12011

    Article  Google Scholar 

  15. Babu BV, Munawar SA (2007) Differential evolution strategies for optimal design of shell-and-tube heat exchangers. Chem Eng Sci 62(14):2739–3720

    Article  Google Scholar 

  16. Chattopadhyay S, Jhajharia D, Chattopadhyay G (2011) Trend estimation and univariate forecast of the sunspot numbers: development and comparison of ARMA, ARIMA and autoregressive neural network models. Comptes Rendus Geosci 343:433–442

    Article  Google Scholar 

  17. Majhi R, Majhi B, Rout M, Mishra S, Panda G (2009) Efficient sales forecasting using ARMA-PSO model. In: IEEE international conference on nature and biologically inspired, computing, pp 1333–1337

  18. Zhang Y-Q, Wan X (2007) Statistical fuzzy interval neural networks for currency exchange rate time series prediction. Appl Soft Comput 7(4):1149–1156

    Article  Google Scholar 

  19. Önder E, Fırat B, Hepsen A (2013) Forecasting macroeconomic variables using artificial neural network and traditional smoothing techniques. Appl Finance Bank 3(4):3–104

    Google Scholar 

  20. Santos A, da Costa N, dos Santos L (2007) Coelho, Computational intelligence approaches and linear models in case studies of forecasting exchange rates. Expert Syst Appl 33(4):816–823

    Article  Google Scholar 

  21. Gradojevic N, Erdemlioglu D, Gençay R (2017) Informativeness of trade size in foreign exchange markets. Econ Lett 150:27–33

    Article  MathSciNet  MATH  Google Scholar 

  22. Evans C, Pappas K, Xhafa F (2013) Utilizing artificial neural networks and genetic algorithms to build an algo-trading model for intra-day foreign exchange speculation. Math Comput Model 58:1249–1266

    Article  Google Scholar 

  23. Rehman M, Khan GM, Mahmud SA (2014) Foreign currency exchange rate prediction using CGP and recurrent neural network. Int Conf Future Inf Eng IERI Pocedia 10:239–244

    Google Scholar 

  24. Rout M, Majhi B, Majhi R, Panda G (2014) Forecasting of currency exchange rates using an adaptive ARMA model with differential evolution based training. J King Saud Univ Comput Inf Sci 26:7–18

    Google Scholar 

  25. Gençay R, Gradojevic N, Olsen R, Selçuk F (2015) Informed traders’ arrival in foreign exchange markets: does geography matter? Empir Econ 49(4):1431–1462

    Article  Google Scholar 

  26. Gençay R, Gradojevic N (2013) Private information and its origins in an electronic foreign exchange market. Econ Model 33:86–93

    Article  Google Scholar 

  27. Gradojevic N, Gençay R (2013) Fuzzy logic, trading uncertainty and technical trading. J Bank Finance 37(2):578–586

    Article  Google Scholar 

  28. Xue Y, Gençay R (2012) Trading frequency and volatility clustering. J Bank Finance 36(3):760–773

    Article  Google Scholar 

  29. Gençay R, Gradojevic N, Selçuk F, Whitcher B (2010) Asymmetry of information flow between volatilities across time scales. Quant Finance 10(8):895–915

    Article  MathSciNet  Google Scholar 

  30. Gençay R, Gradojevic N (2010) Crash of’87—Was it expected?: aggregate market fears and long-range dependence. J Empir Finance 17(2):270–282

    Article  Google Scholar 

  31. Gençay R, Dacorogna MM, Ballocchi G, Olsen RB, Pictet O (2002) Real-time trading models and the statistical properties of foreign exchange rates (December 1998). Olsen and Associates Working Paper No. 319. doi: 10.2139/ssrn.155048. Available at SSRN: https://ssrn.com/abstract=155048

  32. Gencay R, Dacorogna M, Olsen R, Pictet O (2003) Foreign exchange trading models and market behavior. J Econ Dyn Control 27(6):909–935

    Article  MATH  Google Scholar 

  33. Xu Z, Gençay R (2003) Scaling, self-similarity and multifractality in FX markets. Physica A 323:578–590

    Article  MathSciNet  MATH  Google Scholar 

  34. Nekhili R, Altay-Salih A, Gençay R (2002) Exploring exchange rate returns at different time horizons. Physica A 313(3):671–682

    Article  MATH  Google Scholar 

  35. Dacorogna MM, Gençay R, Müller UA, Pictet OV (2001) Effective return, risk aversion and drawdowns. Physica A 289(1):229–248

    Article  MathSciNet  MATH  Google Scholar 

  36. Gençay R, Selçuk F, Whitcher B (2001) Scaling properties of foreign exchange volatility. Physica A 289(1):249–266

    Article  MathSciNet  MATH  Google Scholar 

  37. Arifovic J, Gencay R (2000) Statistical properties of genetic learning in a model of exchange rate. J Econ Dyn Control 24(5):981–1005

    Article  MATH  Google Scholar 

  38. Gencay R (1999) Linear, non-linear and essential foreign exchange rate prediction with simple technical trading rules. J Int Econ 47(1):91–107

    Article  Google Scholar 

  39. Gencay R, Stengos T (1998) Moving average rules, volume and the predictability of security returns with feedforward networks. J Forecast 17:401–414

    Article  Google Scholar 

  40. Gencay R (1998) The predictability of security returns with simple technical trading rules. J Empir Finance 5(4):347–359

    Article  Google Scholar 

  41. Gencay R (1998) Optimization of technical trading strategies and the profitability in security markets. Econ Lett 59(2):249–254

    Article  Google Scholar 

  42. Gençay R, Liu T (1997) Nonlinear modelling and prediction with feedforward and recurrent networks. Physica D 108(1–2):119–134

    Article  Google Scholar 

  43. Gencay R, Stengos T (1997) Technical trading rules and the size of the risk premium in security returns. Stud Nonlinear Dyn Econ 2(2). doi:10.2202/1558-3708.1026

  44. Gencay R (1996) Non-linear prediction of security returns with moving average rules. J Forecast 15(3):165–174

    Article  MathSciNet  Google Scholar 

  45. Flores JJ, Graff M, Rodriguez H (2012) Evaluative design of ARMA and ANN models for time series forecasting. Renew Energy 44:225–230

    Article  Google Scholar 

  46. Majhi R, Panda G, Sahoo G (2009) Efficient prediction of exchange rates with low complexity artificial neural network models. Expert Syst Appl 36:181–189

    Article  Google Scholar 

  47. Chen A-S, Leung MT (2004) Regression neural network for error correction in foreign exchange forecasting and trading. Comput Oper Res 31:1049–1068

    Article  MATH  Google Scholar 

  48. Ozkan F (2012) A comparison of the monetary model and artificial neural networks in exchange rate forecasting bus. Econ Res J 3(1):27–39

    Google Scholar 

  49. Bissoondeeal RK, Karoglou M, Gazely AM (2011) Forecasting the UK/US exchange rate with divisia monetary models and neural networks. Scott J Polit Econ 58(1):127–152

    Article  Google Scholar 

  50. Chen A, Leung MT, Daouk H (2003) Applications of neural networks to an emerging financial market: forecasting and trading the Taiwan stock index. Comput Oper Res 30:901–923

    Article  MATH  Google Scholar 

  51. Huang S-C (2008) Online option price forecasting by using unscented Kalman filters and support vector machines. Expert Syst Appl 34:2819–2825

    Article  Google Scholar 

  52. Burges CJC (1998) A tutorial on support vector machines for pattern classification. Data Min Knowl Disc 2(2):121–167

    Article  Google Scholar 

  53. Chapelle O, Vapnik V, Bousquet O, Mukherjee S (2002) Choosing multiple parameters for support vector machines. Mach Learn 46(13):131–159

    Article  MATH  Google Scholar 

  54. Collobert R, Bengio S (2001) Svmtorch: support vector machines for large scale regression problems. J Mach Learn Res 1:143–160

    MathSciNet  MATH  Google Scholar 

  55. Lee YJ, Mangasarian OL (2001) RSVM: reduced support vector machines. In: CD proceedings of the first SIAM international conference on data mining

  56. Scholkopf B, Smola AJ (2002) Learning with kernels: support vector machines, regularization, optimization, and beyond. The MIT Press, Cambridge

    Google Scholar 

  57. Trafalis TB, Ince H, Mishina T (2003) Support vector regression in option pricing. In: Proceedings of conference on computational intelligence and financial engineering (CIFer), Hong Kong

  58. Nag AK, Mitra A (2002) Forecasting daily foreign exchange rates using genetically optimized neural networks. J Forecast 21:501–551

    Article  Google Scholar 

  59. Cortes C, Vapnik V (1995) Support vector networks. Mach Learn 20:273–297

    MATH  Google Scholar 

  60. Vapnik V (1995) The nature of statistical learning theory. Springer, Berlin

    Book  MATH  Google Scholar 

  61. http://in.investing.com/currencies

  62. Fayek MB (2013) Multi-objective optimization of technical stock market indicators using gas. Int J Comput Appl 68(20):0975–8887

    Google Scholar 

  63. Thomsett MC (2009) The options trading body of knowledge: the definitive source for information. FT Press, Upper Saddle River, p 268

    Google Scholar 

  64. Blau W (1991) True strength index. Tech Anal Stocks Commod (traders.com) 11(1):438–446

    Google Scholar 

  65. Murphy JJ (2009) The visual investor: how to spot market trends, 2nd edn. Wiley, New York, p 100

    Google Scholar 

  66. http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:williams_r

  67. Zhang GP, Qi M (2005) Neural network forecasting for seasonal and trend time series. Eur J Oper Res 160(2):501–514

    Article  MathSciNet  MATH  Google Scholar 

  68. Nayak RK, Mishra D, Rath AK (2015) A Naïve SVM-K-NN based stock market trend reversal analysis for Indian benchmark indices. Appl Soft Comput 35:670–680

    Article  Google Scholar 

  69. Cha S-H (2007) Comprehensive survey on distance/similarity measures between probability density functions. City 1(2):1

    MathSciNet  Google Scholar 

  70. Coope ID, Christopher JP (2001) On the convergence of grid-based methods for unconstrained optimization. SIAM J Optim 11(4):859–869

    Article  MathSciNet  MATH  Google Scholar 

  71. Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13(1):281–305

    MathSciNet  MATH  Google Scholar 

  72. Ning HH (2010) Short term forecasting of stock price based on genetic neural network. In: Sixth international conference on natural computation, pp 1838–1841

  73. Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, vol 1, pp 39–43

  74. Chakravarty S, Dash PK (2012) A PSO based integrated functional link net and interval type-2 fuzzy logic system for predicting stock market indices. Appl Soft Comput 12:931–941

    Article  Google Scholar 

  75. Dorigo M, Stützle T (2009) Ant colony optimization: overview and recent advances. In: Techreport, IRIDIA, Universite Libre de Bruxelles

  76. Yang X-S (2009) Firefly algorithms for multimodal optimization, stochastic algorithms: foundations and applications. Springer, Berlin Heidelberg, pp 169–178

    Book  MATH  Google Scholar 

  77. Yang X-S (2010) A new metaheuristic bat-inspired algorithm, nature inspired cooperative strategies for optimization (NICSO). Springer, Berlin, pp 65–74

    Book  Google Scholar 

  78. Schmitt LM (2001) Theory of genetic algorithms. Theor Comput Sci 259(1):1–61

    Article  MathSciNet  MATH  Google Scholar 

  79. Houck CR, Joines J, Kay MG (1995) A genetic algorithm for function optimization: a Matlab implementation. NCSU-IE TR 95(09):1–10

    Google Scholar 

  80. Wu CH, Tzeng GH, Goo YJ, Fang WC (2007) A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy. Expert Syst Appl 32(2):397–408

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debahuti Mishra.

Ethics declarations

Conflict of interest

I certify that there is no actual or potential conflict of interest in relation to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, R.K., Mishra, D. & Rath, A.K. An optimized SVM-k-NN currency exchange forecasting model for Indian currency market. Neural Comput & Applic 31, 2995–3021 (2019). https://doi.org/10.1007/s00521-017-3248-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3248-5

Keywords

Navigation