Skip to main content
Log in

Improving multi-criterion optimization with chaos: a novel Multi-Objective Chaotic Crow Search Algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

A Correction to this article was published on 02 December 2017

This article has been updated

Abstract

This paper presents two multi-criteria optimization techniques: the Multi-Objective Crow Search Algorithm (MOCSA) and an improved chaotic version called Multi-Objective Chaotic Crow Search Algorithm (MOCCSA). Both methods MOCSA and MOCCSA are based on an enhanced version of the recently published Crow Search Algorithm. Crows are intelligent animals with interesting strategies for protecting their food hatches. This compelling behavior is extended into a Multi-Objective approach. MOCCSA uses chaotic-based criteria on the optimization process to improve the diversity of solutions. To determinate if the performance of the algorithm is significantly enhanced, the incorporation of a chaotic operator is further validated by a statistical comparison between the proposed MOCCSA and its chaotic-free counterpart (MOCSA) indicating that the results of the two algorithms are significantly different from each other. The performance of MOCCSA is evaluated by a set of standard benchmark functions, and the results are contrasted with two well-known algorithms: Multi-Objective Dragonfly Algorithm and Multi-Objective Particle Swarm Optimization. Both quantitative and qualitative results show competitive results for the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 02 December 2017

    In the original publication, Algorithm 1 and Algorithm 2 are incorrectly published with the same content.

References

  1. Yang X (2010) Engineering optimization. Eng Optim. Wiley, Hoboken, pp 15–28

    Chapter  Google Scholar 

  2. Araghi S, Khosravi A, Creighton D (2015) Intelligent cuckoo search optimized traffic signal controllers for multi-intersection network. Expert Syst Appl 42:4422–4431. doi:10.1016/j.eswa.2015.01.063

    Article  Google Scholar 

  3. Bekdaş G, Nigdeli SM, Yang X-S (2015) Sizing optimization of truss structures using flower pollination algorithm. Appl Soft Comput 37:322–331. doi:10.1016/j.asoc.2015.08.037

    Article  Google Scholar 

  4. Hong W-C (2009) Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model. Energy Convers Manag 50:105–117. doi:10.1016/j.enconman.2008.08.031

    Article  Google Scholar 

  5. Walia GS, Kapoor R (2014) Intelligent video target tracking using an evolutionary particle filter based upon improved cuckoo search. Expert Syst Appl 41:6315–6326. doi:10.1016/j.eswa.2014.03.012

    Article  Google Scholar 

  6. Coello CAC, Lamont GB, Van Veldhuizen DA (2007) Evolutionary algorithms for solving multi-objective problems, 2nd edn. doi:10.1007/s11276-014-0817-8

  7. Deb K (1999) Multi-objective genetic algorithms: problem difficulties and construction of test problems. Evol Comput 7:205–230. doi:10.1162/evco.1999.7.3.205

    Article  Google Scholar 

  8. Deb K, Pratab S, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NGSA-II. IEEE Trans Evol Comput 6:182–197. doi:10.1109/4235.996017

    Article  Google Scholar 

  9. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3:257–271. doi:10.1109/4235.797969

    Article  Google Scholar 

  10. Zitzler E, Laumanns M, Thiele L (2002) SPEA2: improving the strength pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou KC et al (eds) Proceedings of evolutionary methods for design, optimization and control with application to industrial problems (EUROGEN 2001). International Center for Numerical Methods in Engineering (CIMNE), Barcelona, Spain, pp 95–100

  11. Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8:256–279. doi:10.1109/TEVC.2004.826067

    Article  Google Scholar 

  12. Knowles JD, Corne DW (2000) Approximating the nondominated front using the Pareto archived evolution strategy. Evol Comput 8:149–172. doi:10.1162/106365600568167

    Article  Google Scholar 

  13. Zhang Q, Li H (2007) MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evolut Comput 11:712–731. doi:10.1109/TEVC.2007.892759

    Article  Google Scholar 

  14. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27:1053–1073. doi:10.1007/s00521-015-1920-1

    Article  Google Scholar 

  15. Suman B (2005) Study of self-stopping PDMOSA and performance measure in multiobjective optimization. Comput Chem Eng 29:1131–1147. doi:10.1016/j.compchemeng.2004.12.002

    Article  Google Scholar 

  16. von Lücken C, Barán B, Brizuela C (2014) A survey on multi-objective evolutionary algorithms for many-objective problems. Comput Optim Appl 58:707–756. doi:10.1007/s10589-014-9644-1

    MathSciNet  MATH  Google Scholar 

  17. Deb K, Deb K (2014) Multi-objective optimization. Search methodol. Springer, Boston, pp 403–449

    Chapter  Google Scholar 

  18. Zavala GR, Nebro AJ, Luna F, Coello Coello CA (2014) A survey of multi-objective metaheuristics applied to structural optimization. Struct Multidiscip Optim 49:537–558. doi:10.1007/s00158-013-0996-4

    Article  MathSciNet  Google Scholar 

  19. Sağ T, Çunkaş M (2015) Color image segmentation based on multiobjective artificial bee colony optimization. Appl Soft Comput 34:389–401. doi:10.1016/j.asoc.2015.05.016

    Article  Google Scholar 

  20. Costa CBB, Potrich E, Cruz AJG (2016) Multiobjective optimization of a sugarcane biorefinery involving process and environmental aspects. Renew Energy 96:1142–1152. doi:10.1016/j.renene.2015.10.043

    Article  Google Scholar 

  21. Ahmadi A, Tiruta-Barna L (2015) A Process Modelling-Life Cycle Assessment-Multiobjective Optimization tool for the eco-design of conventional treatment processes of potable water. J Clean Prod 100:116–125. doi:10.1016/j.jclepro.2015.03.045

    Article  Google Scholar 

  22. Ruiz AB, Sindhya K, Miettinen K et al (2015) E-NAUTILUS: a decision support system for complex multiobjective optimization problems based on the NAUTILUS method. Eur J Oper Res 246:218–231. doi:10.1016/j.ejor.2015.04.027

    Article  MathSciNet  MATH  Google Scholar 

  23. Garcia DJ, You F (2015) Multiobjective optimization of product and process networks: general modeling framework, efficient global optimization algorithm, and case studies on bioconversion. AIChE J 61:530–554. doi:10.1002/aic.14666

    Article  Google Scholar 

  24. Fang J, Gao Y, Sun G et al (2015) Multiobjective robust design optimization of fatigue life for a truck cab. Reliab Eng Syst Saf 135:1–8. doi:10.1016/j.ress.2014.10.007

    Article  Google Scholar 

  25. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82. doi:10.1109/4235.585893

    Article  Google Scholar 

  26. Tavazoei MS, Haeri M (2007) Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms. Appl Math Comput 187:1076–1085. doi:10.1016/j.amc.2006.09.087

    MathSciNet  MATH  Google Scholar 

  27. Bucolo M, Caponetto R, Fortuna L et al (2002) Does chaos work better than noise? IEEE Circuits Syst Mag 2:4–19. doi:10.1109/MCAS.2002.1167624

    Article  Google Scholar 

  28. Yang D, Liu Z, Zhou J (2014) Chaos optimization algorithms based on chaotic maps with different probability distribution and search speed for global optimization. Commun Nonlinear Sci Numer Simul 19:1229–1246. doi:10.1016/j.cnsns.2013.08.017

    Article  MathSciNet  Google Scholar 

  29. Ott E (2002) Chaos in dynamical systems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  30. Yang D, Yang P, Zhang C (2012) Chaotic characteristic analysis of strong earthquake ground motions. Int J Bifurc Chaos. doi:10.1142/S0218127412500459

    MATH  Google Scholar 

  31. Caponetto R, Fortuna L, Fazzino S, Xibilia MG (2003) Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans Evol Comput 7:289–304. doi:10.1109/TEVC.2003.810069

    Article  Google Scholar 

  32. Willi-Hans S (2014) The nonlinear workbook: chaos, fractals, cellular automata, neural networks, genetic algorithms, fuzzy logic, 6th edn. World Scientific Publishing Co Inc, Hackensack

    Google Scholar 

  33. Chuang L-Y, Yang C-H, Li J-C (2011) Chaotic maps based on binary particle swarm optimization for feature selection. Appl Soft Comput 11:239–248. doi:10.1016/j.asoc.2009.11.014

    Article  Google Scholar 

  34. Yuan X, Zhao J, Yang Y, Wang Y (2014) Hybrid parallel chaos optimization algorithm with harmony search algorithm. Appl Soft Comput 17:12–22. doi:10.1016/j.asoc.2013.12.016

    Article  Google Scholar 

  35. Gokhale SS, Kale VS (2016) An application of a tent map initiated Chaotic Firefly algorithm for optimal overcurrent relay coordination. Int J Electr Power Energy Syst 78:336–342. doi:10.1016/j.ijepes.2015.11.087

    Article  Google Scholar 

  36. Afrabandpey H, Ghaffari M, Mirzaei A, Safayani M (2014) A novel Bat Algorithm based on chaos for optimization tasks. In: 2014 Iranian conference intelligent systems. IEEE, pp 1–6

  37. Song Y, Chen Z, Yuan Z (2007) Neural network nonlinear predictive control based on tent-map chaos optimization. Chin J Chem Eng 15:539–544. doi:10.1016/S1004-9541(07)60121-9

    Article  Google Scholar 

  38. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12. doi:10.1016/j.compstruc.2016.03.001

    Article  Google Scholar 

  39. Coello Coello CA (2009) Evolutionary multi-objective optimization: some current research trends and topics that remain to be explored. Front Comput Sci China 3:18–30. doi:10.1007/s11704-009-0005-7

    Article  Google Scholar 

  40. Zhou A, Qu B-Y, Li H et al (2011) Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol Comput 1:32–49. doi:10.1016/j.swevo.2011.03.001

    Article  Google Scholar 

  41. Black H (2013) Social skills to crow about. Sci Am Mind 24:12. doi:10.1038/scientificamericanmind0913-12

    Article  Google Scholar 

  42. Zhang Q, Zhou A, Zhao S, et al (2009) Multiobjective optimization test instances for the CEC 2009 special session and competition. Tech Rep 1–30

  43. Sierra MR, Coello Coello CA (2005) Improving PSO-based multi-objective optimization using crowding, mutation and ∈-dominance. Springer, Berlin, pp 505–519

    MATH  Google Scholar 

  44. Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applications. PhD Thesis

  45. Fonseca CM, Fleming PJ (1996) On the performance assessment and comparison of stochastic multiobjective optimizers. In: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). pp 584–593

  46. López-Ibáñez M, Paquete L, Stützle T (2010) Exploratory analysis of stochastic local search algorithms in biobjective optimization. Experimental methods for the analysis of optimization algorithms. Springer, Berlin, pp 209–222

    Chapter  Google Scholar 

  47. García S, Molina D, Lozano M, Herrera F (2008) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J Heuristics 15:617–644. doi:10.1007/s10732-008-9080-4

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The second author acknowledges The National Council of Science and Technology of Mexico (CONACyT) for the doctoral Grant number 298285 for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Oliva.

Ethics declarations

This research was partially supported by The National Council of Science and Technology of Mexico (CONACyT) for the doctoral Grant number 298285.None of the authors of this paper has a financial or personal relationship with other people or organizations that could inappropriately influence or bias the content of the paper.

Conflict of interest

It is to specifically state that “No Competing interests are at stake and there is No Conflict of Interest” with other people or organizations that could inappropriately influence or bias the content of the paper.

Human and animal rights statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

The original version of this article was revised: Algorithm 1 and Algorithm 2 were incorrectly published with the same content. Now, it has been corrected.

A correction to this article is available online at https://doi.org/10.1007/s00521-017-3293-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinojosa, S., Oliva, D., Cuevas, E. et al. Improving multi-criterion optimization with chaos: a novel Multi-Objective Chaotic Crow Search Algorithm. Neural Comput & Applic 29, 319–335 (2018). https://doi.org/10.1007/s00521-017-3251-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3251-x

Keywords

Navigation