Skip to main content

Advertisement

Log in

QoS multicast routing for wireless mesh network based on a modified binary bat algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The quality of service multicast routing problem is a very important research issue for transmission in wireless mesh networks. It is known to be NP-complete problem, so many heuristic algorithms have been employed for solving the multicast routing problem. This paper proposes a modified binary bat algorithm applied to solve the QoS multicast routing problem for wireless mesh network which satisfies the requirements of multiple QoS constraints such as delay, delay jitter, bandwidth and packet loss rate to get low-cost multicasting tree. The binary bat algorithm has been modified by introducing the inertia weight w in the velocity update equation, and then the chaotic map, uniform distribution and gaussian distribution are used for choosing the right value of w. The aim of these modifications is to improve the effectiveness and robustness of the binary bat algorithm. The simulation results reveal the successfulness, effectiveness and efficiency of the proposed algorithms compared with other algorithms such as genetic algorithm, particle swarm optimization, quantum-behaved particle swarm optimization algorithm, bacteria foraging-particle swarm optimization, bi-velocity discrete particle swarm optimization and binary bat algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang Z, Crowcroft J (1996) Quality-of-service routing for supporting multimedia applications. IEEE J Sel Areas Commun 14(7):1228–1234

    Article  Google Scholar 

  2. Hwang RH, Do WY, Yang SC (2000) Multicast routing based on genetic algorithms. J Inf Sci Eng 16(6):885–901

    Google Scholar 

  3. Haghighat AT, Faez K, Dehghan M, Mowlaei A, Ghahremani Y (2003) GA-based heuristic algorithms for QoS based multicast routing. Knowl-Based Syst 16(5):305–312

    Article  Google Scholar 

  4. Sun B, Pi S, Gui C, Zeng Y, Yan B, Wang W, Qin Q (2008) Multiple constraints QoS multicast routing optimization algorithm in MANET based on GA. Prog Nat Sci 18(3):331–336

    Article  Google Scholar 

  5. Yen YS, Chao HC, Chang RS, Vasilakos A (2011) Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Math Comput Modell 53(11):2238–2250

    Article  Google Scholar 

  6. Tseng SY, Lin CC, Huang YM (2008) Ant colony-based algorithm for constructing broadcasting tree with degree and delay constraints. Expert Syst Appl 35(3):1473–1481

    Article  Google Scholar 

  7. Wang H, Xu H, Yi S, Shi Z (2011) A tree-growth based ant colony algorithm for QoS multicast routing problem. Expert Syst Appl 38(9):11787–11795

    Article  Google Scholar 

  8. Ghaboosi N, Haghighat AT (2007) Tabu search based algorithms for bandwidth-delay-constrained least-cost multicast routing. Telecommun Syst 34(3–4):147–166

    Article  Google Scholar 

  9. Wang H, Meng X, Zhang M, Li Y (2010) Tabu search algorithm for RP selection in PIM-SM multicast routing. Comput Commun 33(1):35–42

    Article  Google Scholar 

  10. Liu J, Sun J, Xu W-B (2006) QoS multicast routing based on particle swarm optimization. In: Corchado E, Yin H, Botti V, Fyfe C (eds) IDEAL 2006. LNCS, vol 4224, Springer, Heidelberg, pp 936–943

  11. Wang H, Meng X, Li S, Xu H (2010) A tree-based particle swarm optimization for multicast routing. Comput Netw 54(15):2775–2786

    Article  MATH  Google Scholar 

  12. Sun J, Fang W, Wu X, Xie Z, Xu W (2011) QoS multicast routing using a quantum-behaved particle swarm optimization algorithm. Eng Appl Artif Intell 24(1):123–131

    Article  Google Scholar 

  13. Pradhan R, Kabat M-R, Sahoo S-P (2013) A bacteria foraging-particle swarm optimization algorithm for QoS multicast routing. In: Panigrahi BK et al (eds) SEMCCO 2013. LNCS. vol 8297, Springer, Berlin, pp 590-600

  14. Shen M, Zhan ZH, Chen WN, Gong YJ, Zhang J, Li Y (2014) Bi-velocity discrete particle swarm optimization and its application to multicast routing problem in communication networks. IEEE Trans Ind Electr 61(12):7141–7151

    Article  Google Scholar 

  15. Abdel-Kader RF (2011) An improved discrete PSO with GA operators for efficient QoS-multicast routing. Int J Hybrid Inf Technol 4(2):23–38

    Google Scholar 

  16. Yang X-S (2010). A new metaheuristic bat-inspired algorithm. In: Gonzalez JR et al (eds) Nature inspired cooperative strategies for optimization (NICSO 2010). SCI vol 284, Springer, Berlin, pp. 65–74

  17. Nakamura RY, Pereira LA, Costa KA, Rodrigues D, Papa JP, Yang XS (2012). BBA: a binary bat algorithm for feature selection. In: 2012 25th SIBGRAPI conference on graphics, patterns and images, IEEE, pp 291–297

  18. Yilmaz S, Kucuksille EU (2013) Improved bat algorithm (IBA) on continuous optimization problems. Lect Notes Softw Eng 1(3):279

    Article  Google Scholar 

  19. Gandomi AH, Yang XS, Alavi AH, Talatahari S (2013) Bat algorithm for constrained optimization tasks. Neural Comput Appl 22(6):1239–1255

    Article  Google Scholar 

  20. Tamiru AL, Hashim FM (2013) Application of bat algorithm and fuzzy systems to model exergy changes in a gas turbine. In: Artificial intelligence, evolutionary computing and metaheuristics, Springer, Berlin Heidelberg, pp 685–719

  21. Cai X, Wang L, Kang Q, Wu Q (2014) Bat algorithm with Gaussian walk. Int J Bio-Inspir Comput 6(3):166–174

    Article  Google Scholar 

  22. Sabba S, Chikhi S (2014) A discrete binary version of bat algorithm for multidimensional knapsack problem. Int J Bio-Inspir Comput 6(2):140–152

    Article  Google Scholar 

  23. Abdel-Raouf O, Abdel-Baset M, El-Henawy I (2014) An improved chaotic bat algorithm for solving integer programming problems. Int J Mod Educ Comput Sci 6(8):18

    Article  Google Scholar 

  24. Yilmaz S, Kucuksille EU (2015) A new modification approach on bat algorithm for solving optimization problems. Appl Soft Comput 28:259–275

    Article  Google Scholar 

  25. Byksaat S (2015) Bat algorithm application for the single row facility layout problem. In: Recent advances in swarm intelligence and evolutionary computation, Springer International Publishing, Berlin, pp 101–120

  26. Fister I, Rauter S, Yang XS, Ljubi K (2015) Planning the sports training sessions with the bat algorithm. Neurocomputing 149:993–1002

    Article  Google Scholar 

  27. Saji Y, Riffi ME (2016) A novel discrete bat algorithm for solving the travelling salesman problem. Neural Comput Appl 27(7):1853–1866

    Article  Google Scholar 

  28. Oshaba AS, Ali ES, Elazim SA (2017) PI controller design for MPPT of photovoltaic system supplying SRM via BAT search algorithm. Neural Comput Appl 28(4):651–667

    Article  Google Scholar 

  29. Zhao D, He Y (2015) Chaotic binary bat algorithm for analog test point selection. Analog Integr Circ Sig Process 84(2):201–214

    Article  Google Scholar 

  30. Mirjalili S, Mirjalili SM, Yang X-S (2014) Binary bat algorithm. Neural Comput Appl 25(3–4):663–681

    Article  Google Scholar 

  31. Mirjalili S, Lewis A (2013) S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm Evolut Comput 9:1–14

    Article  Google Scholar 

  32. Saremi S, Mirjalili S, Lewis A (2014) How important is a transfer function in discrete heuristic algorithms. Neural Comput Appl 26(3):625–640

    Article  Google Scholar 

  33. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2010) BGSA: binary gravitational search algorithm. Nat Comput 9(3):727–745

    Article  MathSciNet  MATH  Google Scholar 

  34. Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: IEEE international conference on computational cybernetics and simulation, pp 4104–4108

  35. Shi Y, Eberhart RC (1999) Empirical study of particle swarm optimization. In: Proceedings of the congress on evolutionary computation (CEC), pp 1945–1950

  36. Caponetto R, Fortuna L, Fazzino S, Xibilia MG (2003) Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans Evolut Comput 7(3):289–304

    Article  Google Scholar 

  37. Chuang LY, Yang CH, Li JC (2011) Chaotic maps based on binary particle swarm optimization for feature selection. Appl Soft Comput 11(1):239–248

    Article  Google Scholar 

  38. Heidari AA, Abbaspour RA, Jordehi AR (2015) An efficient chaotic water cycle algorithm for optimization tasks. Neural Comput Appl 1–29

  39. Saremi S, Mirjalili S, Lewis A (2014) Biogeography-based optimisation with chaos. Neural Comput Appl 25(5):1077–1097

    Article  Google Scholar 

  40. Lei X, Du M, Xu J, Tan Y (2014) Chaotic Fruit Fly Optimization Algorithm. In : Tan, Y. et al. (eds) ICSI 2014. LNCS vol 8794, Springer Switzerland, pp 74–85

  41. Kanso A, Smaoui N (2009) Logistic chaotic maps for binary numbers generations. Chaos, Solitons Fractals 40(5):2557–2568

    Article  MATH  Google Scholar 

  42. dos Santos Coelho L, Sauer JG, Rudek M (2009) Differential evolution optimization combined with chaotic sequences for image contrast enhancement. Chaos, Solitons Fractals 42(1):522–529

    Article  Google Scholar 

  43. Waxman BM (1988) Routing of multipoint connections. IEEE J Sel Areas Commun 6(9):1617–1622

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassine Meraihi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meraihi, Y., Acheli, D. & Ramdane-Cherif, A. QoS multicast routing for wireless mesh network based on a modified binary bat algorithm. Neural Comput & Applic 31, 3057–3073 (2019). https://doi.org/10.1007/s00521-017-3252-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3252-9

Keywords

Navigation