Skip to main content
Log in

Self-organizing hierarchical monkey algorithm with time-varying parameter

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a self-organizing hierarchical monkey algorithm (SHMA) with a time-varying parameter to improve the performance of the original monkey algorithm (MA). In the proposed SHMA, we adopt a hierarchical structure to organize the climb, watch, and somersault operations and apply a self-organizing mechanism to coordinate these operations. Moreover, a time-varying parameter is employed to adjust the exploration ability and exploitation ability during the optimization process. The SHMA also applies the fitness information of solutions to guide the optimization process and introduces a selection operator, a fitness-based replacement operator, and a repulsion operator into the climb, watch and somersault operations, respectively. To investigate the performance of the SHMA, we compare it with eight different metaheuristic algorithms on 30 benchmark problems and four real-world optimization problems. The simulation results show that the SHMA exhibits better overall performance than the eight compared algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: IEEE congress on evolutionary computation, pp 4661–4666

  2. Boussaïd I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci 237:82–117

    Article  MathSciNet  MATH  Google Scholar 

  3. Brest J, Greiner S, Bošković B, Mernik M, Žumer V (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10:646–657

    Article  Google Scholar 

  4. Das S, Suganthan P (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15:4–31

    Article  Google Scholar 

  5. Das S, Suganthan P (2010) Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems. Jadavpur Univ., Kolkata, India, and Nanyang Technol. Univ., Singapore, Dec. 2010

  6. Dorigo M, Blum C (2005) Ant colony optimization theory: a survey. Theor Comput Sci 344:243–278

    Article  MathSciNet  MATH  Google Scholar 

  7. Drezner Z, Misevičius A (2013) Enhancing the performance of hybrid genetic algorithms by differential improvement. Comput Oper Res 40:1038–1046

    Article  MATH  Google Scholar 

  8. Eita M, Fahmy M (2014) Group counseling optimization. Appl Soft Comput 24:585–604

    Article  Google Scholar 

  9. Epitropakis M, Plagianakos V, Vrahatis M (2012) Evolving cognitive and social experience in particle swarm optimization through differential evolution: a hybrid approach. Inf Sci 216:50–92

    Article  Google Scholar 

  10. Fogel L (1999) Intelligence through simulated evolution: forty years of evolutionary programming. Wiley, New York

    MATH  Google Scholar 

  11. Gandomi A, Alavi A (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17:4831–4845

    Article  MathSciNet  MATH  Google Scholar 

  12. García-Martínez C, Lozano M, Herrera F, Molina D, Sánchez A (2008) Global and local real-coded genetic algorithms based on parent-centric crossover operators. Eur J Oper Res 185:1088–1113

    Article  MATH  Google Scholar 

  13. Ghosh S, Das S, Roy S, Islam S, Suganthan P (2012) A differential covariance matrix adaptation evolutionary algorithm for real parameter optimization. Inf Sci 182:199–219

    Article  MathSciNet  Google Scholar 

  14. Goldberg D (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, New York

    MATH  Google Scholar 

  15. Guo S, Yang C, Hsu P, Tsai J (2015) Improving differential evolution with successful-parent-selecting framework. IEEE Trans Evol Comput 19:717–730

    Article  Google Scholar 

  16. Hansen N, Müller S, Koumoutsakos P (2003) Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol Comput 11:1–18

    Article  Google Scholar 

  17. Herrera F, Lozano M (2000) Gradual distributed real-coded genetic algorithms. IEEE Trans Evol Comput 4:43–63

    Article  Google Scholar 

  18. Hu M, Wu T, Weir J (2013) An adaptive particle swarm optimization with multiple adaptive methods. IEEE Trans Evol Comput 17:705–720

    Article  Google Scholar 

  19. Karaboga D, Akay B (2009) A survey: algorithms simulating bee swarm intelligence. Artif Intell Rev 31:61–85

    Article  Google Scholar 

  20. Karafotias G, Hoogendoorn M, Eiben A (2015) Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans Evol Comput 19:167–187

    Article  Google Scholar 

  21. Kennedy J, Eberhart R, Shi Y (2001) Swarm intelligence. Morgan Kaufman, San Francisco

    Google Scholar 

  22. Lan Y, Zhao R, Tang W (2011) Minimum risk criterion for uncertain production planning problems. Comput Ind Eng 61:591–599

    Article  Google Scholar 

  23. Larrañaga P, Lozano J (2002) Estimation of distribution algorithms: a new tool for evolutionary computation. Kluwer Academic Publishers, Boston

    Book  MATH  Google Scholar 

  24. Li M, Zhao H, Weng X, Han T (2016) A novel nature-inspired algorithm for optimization: virus colony search. Adv Eng Softw 92:65–88

    Article  Google Scholar 

  25. Liang J, Qu B, Suganthan P (2013) Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Technical Report 201311

  26. Ma H, Simon D, Fei M, Shu X, Chen Z (2014) Hybrid biogeography-based evolutionary algorithms. Eng Appl Artif Intell 30:213–224

    Article  Google Scholar 

  27. Mahdavi S, Shiri M, Rahnamayan S (2015) Metaheuristics in large-scale global continues optimization: a survey. Inf Sci 295:407–428

    Article  MathSciNet  Google Scholar 

  28. Mohadeseh S, Hossein N (2013) A modified monkey algorithm for real-parameter optimization. J Mult Valued Logic Soft Comput 21:453–477

    MathSciNet  Google Scholar 

  29. Pandey H, Chaudhary A, Mehrotra D (2014) A comparative review of approaches to prevent premature convergence in GA. Appl Soft Comput 24:1047–1077

    Article  Google Scholar 

  30. Parejo J, Ruiz-Cortés A, Lozano S, Fernandez P (2012) Metaheuristic optimization frameworks: a survey and benchmarking. Soft Comput 16:527–561

    Article  Google Scholar 

  31. Piotrowski A, Napiorkowski J, Kiczko A (2012) Differential evolution algorithm with separated groups for multi-dimensional optimization problems. Eur J Oper Res 216:33–46

    Article  MathSciNet  MATH  Google Scholar 

  32. Price K, Storn R, Lampinen J (2005) Differential evolution: a practical approach to global optimization. Springer, Berlin

    MATH  Google Scholar 

  33. Rao R, Savsani V, Vakharia D (2012) Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf Sci 183:1–15

    Article  MathSciNet  Google Scholar 

  34. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248

    Article  MATH  Google Scholar 

  35. Ratnaweera A, Halgamuge S, Watson H (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8:240–255

    Article  Google Scholar 

  36. Riget J, Vesterstom J (2002) Adiversity-guided particle swarm optimizer–the ARPSO. Technical report, EVAlife, Denmark

  37. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27:1053–1073

    Article  Google Scholar 

  38. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12:702–713

    Article  Google Scholar 

  39. Sharafi Y, Khanesar M, Teshnehlab M (2016) COOA: competitive optimization algorithm. Swarm Evol Comput 30:39–63

    Article  Google Scholar 

  40. Singh G, Deep K, Nagar A (2014) Cell-like p-systems based on rules of particle swarm optimization. Appl Math Comput 246:546–560

    MathSciNet  MATH  Google Scholar 

  41. Sun G, Liu Y, Lan Y (2010) Optimizing material procurement planning problem by two-stage fuzzy programming. Comput Ind Eng 58:97–107

    Article  Google Scholar 

  42. Sun G, Peng J, Zhao R (2017) Differential evolution with individual-dependent and dynamic parameter adjustment. Soft Comput. https://doi.org/10.1007/s00500-017-2626-3

  43. Sun G, Zhao R, Lan Y (2016) Joint operations algorithm for large-scale global optimization. Appl Soft Comput 38:1025–1039

    Article  Google Scholar 

  44. Tayarani-N M, Yao X, Xu H (2015) Meta-heuristic algorithms in car engine design: a literature survey. IEEE Trans Evol Comput 19:609–629

    Article  Google Scholar 

  45. Wang H, Sun H, Li C, Rahnamayan S, Pan J (2013) Diversity enhanced particle swarm optimization with neighborhood search. Inf Sci 223:119–135

    Article  MathSciNet  Google Scholar 

  46. Wang J, Wang T, Shi P, Tu M, Yang F (2013) Membrane optimization algorithm based on mutated PSO and its application in nonlinear control systems. Int J Innov Comput Inf Control 9:2963–2977

    Google Scholar 

  47. Xu C, Huang H, Ye S (2014) A differential evolution with replacement strategy for real-parameter numerical optimization. In: IEEE congress on evolutionary computation, pp 1617–1624

  48. Xu X, Hua C, Tang Y (2016) Modeling of the hot metal silicon content in blast furnace using support vector machine optimized by an improved particle swarm optimizer. Neural Comput Appl 27:1451–1461

    Article  Google Scholar 

  49. Yang X (2008) Nature-inspired metaheuristic algorithms. Luniver Press: Springer, Frome

    Google Scholar 

  50. Yashesh D, Deb K, Bandaru S (2014) Non-uniform mapping in real-coded genetic algorithms. In: IEEE congress on evolutionary computation, pp 2237–2244

  51. Yi T, Li H, Zhang X (2015) Health monitoring sensor placement optimization for canton tower using immune monkey algorithm. Struct Control Health Monit 22:123–138

    Article  Google Scholar 

  52. Yi T, Li H, Zhang X (2012) Sensor placement on canton tower for health monitoring using asynchronous-climb monkey algorithm. Smart Mater Struct, vol. 21, Article No: 125023

  53. Yi T, Li H, Gu M, Zhang X (2014) Sensor placement optimization in structural health monitoring using niching monkey algorithm. Int J Struct Stab Dyn, Article No: 1440012

  54. Zhao X, Liu Z, Yang X (2014) A multi-swarm cooperative multistage perturbation guiding particle swarm optimizer. Appl Soft Comput 22:77–93

    Article  Google Scholar 

  55. Zhao R, Tang W (2008) Monkey algorithm for global numerical optimization. J Uncertain Syst 2:165–176

    Google Scholar 

  56. Zheng L (2013) An improved monkey algorithm with dynamic adaptation. Appl Math Comput 222:645–657

    MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous reviewers, whose valuable comments lead to an improved version of the paper. This work was supported by the National Natural Science Foundation of China under Grant Nos.71701187, 71771166 and 71771165, and Research Project of Zhejiang Education Department under Grant No. Y201738184 and High Performance Computing Center of Tianjin University, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gaoji Sun or Yanfei Lan.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, G., Lan, Y. & Zhao, R. Self-organizing hierarchical monkey algorithm with time-varying parameter. Neural Comput & Applic 31, 3245–3263 (2019). https://doi.org/10.1007/s00521-017-3265-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3265-4

Keywords