Abstract
Learning vector quantization (LVQ) constitutes a very popular machine learning technology with applications, for example, in biomedical data analysis, predictive maintenance/quality as well as product individualization. Albeit probabilistic LVQ variants exist, its deterministic counterparts are often preferred due to their better efficiency. The latter do not allow an immediate probabilistic interpretation of its output; hence, a rejection of classification based on confidence values is not possible. In this contribution, we investigate different schemes how to extend and integrate pairwise LVQ schemes to an overall probabilistic output, in comparison with a recent heuristic surrogate measure for the security of the classification, which is directly based on LVQ’s multi-class classification scheme. Furthermore, we propose a canonic way how to fuse these values over a given time window in case a possibly disrupted measurement is taken over a longer time interval to counter the uncertainty of a single point in time. Experimental results indicate that an explicit probabilistic treatment often yields superior results as compared to a standard deterministic LVQ method, but metric learning is able to annul this difference. Fusion over a short time period is beneficial in case of an unclear classification.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Anguita D, Ghio A, Oneto L, Parra X, Reyes-Ortiz JL (2013) A public domain dataset for human activity recognition using smartphones. In: 21st European symposium on artificial neural networks, ESANN 2013, Bruges, Belgium, April 24–26, 2013. http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2013-84.pdf
Athalye A, Engstrom L, Ilyas A, Kwok K (2017) Synthesizing robust adversarial examples. CoRR arXiv:abs/1707.07397
Bagnall A, Lines J, Bostrom A, Large J, Keogh EJ (2017) The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min Knowl Discov 31(3):606–660. https://doi.org/10.1007/s10618-016-0483-9
Biehl M, Bunte K, Schleif F, Schneider P, Villmann T (2012) Large margin linear discriminative visualization by matrix relevance learning. In: The 2012 international joint conference on neural networks (IJCNN), Brisbane, Australia, June 10–15, 2012. IEEE, pp 1–8. https://doi.org/10.1109/IJCNN.2012.6252627
Biehl M, Ghosh A, Hammer B (2007) Dynamics and generalization ability of LVQ algorithms. J Mach Learn Res 8:323–360
Biehl M, Hammer B, Villmann T (2016) Prototype-based models in machine learning. WIREs Cognit Sci 7(2):92–111
Brinkrolf J, Hammer B (2017) Probabilistic extension and reject options for pairwise LVQ. In: J. Lamirel, M. Cottrell, M. Olteanu (eds.) 12th international workshop on self-organizing maps and learning vector quantization, clustering and data visualization, WSOM 2017, Nancy, France, June 28–30, 2017, pp. 205–212. IEEE. https://doi.org/10.1109/WSOM.2017.8020028
Brinkrolf J, Hammer B (2018) Interpretable machine learning with reject option. Automatisierungstechnik 66(4):283–290. https://doi.org/10.1515/auto-2017-0123
Bunte K, Schneider P, Hammer B, Schleif F, Villmann T, Biehl M (2012) Limited rank matrix learning, discriminative dimension reduction and visualization. Neural Netw 26:159–173. https://doi.org/10.1016/j.neunet.2011.10.001
Chow C (1970) On optimum recognition error and reject tradeoff. IEEE Trans Inf Theory 16(1):41–46
Denecke A, Wersing H, Steil JJ, Körner E (2009) Online figure-ground segmentation with adaptive metrics in generalized LVQ. Neurocomputing 72(7–9):1470–1482. https://doi.org/10.1016/j.neucom.2008.11.028
Ditzler G, Roveri M, Alippi C, Polikar R (2015) Learning in nonstationary environments: a survey. IEEE Comput Intell Mag 10(4):12–25
Fischer L, Hammer B, Wersing H (2015) Efficient rejection strategies for prototype-based classification. Neurocomputing 169:334–342. https://doi.org/10.1016/j.neucom.2014.10.092
Fischer L, Hammer B, Wersing H (2016) Optimal local rejection for classifiers. Neurocomputing 214:445–457. https://doi.org/10.1016/j.neucom.2016.06.038
Friedman JH (1996) Another approach to polychotomous classification. Technical report, Department of Statistics, Stanford University. http://www-stat.stanford.edu/~jhf/ftp/poly.ps.Z
Gamelas Sousa R, Rocha Neto AR, Cardoso JS, Barreto GA (2015) Robust classification with reject option using the self-organizing map. Neural Comput Appl 26(7):1603–1619. https://doi.org/10.1007/s00521-015-1822-2
Goodfellow IJ, Shlens J, Szegedy C (2014) Explaining and harnessing adversarial examples. ArXiv e-prints
Hammer B, Hofmann D, Schleif FM, Zhu X (2014) Learning vector quantization for (dis-)similarities. Neurocomputing 131:43–51
Hammer B, Strickert M, Villmann T (2004) Relevance LVQ versus SVM. In: Rutkowski L, Siekmann JH, Tadeusiewicz R, Zadeh LA (eds) Proceedings 7th international conference on artificial intelligence and soft computing - ICAISC 2004, Zakopane, Poland, June 7–11, 2004. Lecture notes in computer science, vol. 3070. Springer, pp 592–597. https://doi.org/10.1007/978-3-540-24844-6_89
Hastie T, Tibshirani R (1997) Classification by pairwise coupling. In: Jordan MI, Kearns MJ, Solla SA (eds) Advances in neural information processing systems 10, [NIPS Conference, Denver, Colorado, USA, 1997]. The MIT Press, pp 507–513. http://papers.nips.cc/paper/1375-classification-by-pairwise-coupling
Herbei R, Wegkamp MH (2006) Classification with reject option. Can J Stat 34(4):709–721
Hull JJ (1994) A database for handwritten text recognition research. IEEE Trans Pattern Anal Mach Intell 16(5):550–554. https://doi.org/10.1109/34.291440
Jiménez JG, Monroy JG, Blanco J (2011) The multi-chamber electronic nose—an improved olfaction sensor for mobile robotics. Sensors 11(6):6145–6164. https://doi.org/10.3390/s110606145
Kirstein S, Wersing H, Gross H, Körner E (2012) A life-long learning vector quantization approach for interactive learning of multiple categories. Neural Netw 28:90–105. https://doi.org/10.1016/j.neunet.2011.12.003
Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml. Accessed 22 Mar 2017
Losing V, Hammer B, Wersing H (2015) Interactive online learning for obstacle classification on a mobile robot. In: 2015 International joint conference on neural networks, IJCNN 2015, Killarney, Ireland, July 12–17, 2015, pp 1–8. https://doi.org/10.1109/IJCNN.2015.7280610
Losing V, Hammer B, Wersing H (2016) Choosing the best algorithm for an incremental on-line learning task. In: ESANN
van der Maaten L (2013) Matlab toolbox for dimensionality reduction. Tilburg University, Tilburg
Mäntysalo J, Torkkola K, Kohonen T (1992) LVQ-based speech recognition with high-dimensional context vectors. In: The second international conference on spoken language processing, ICSLP 1992, Banff, Alberta, Canada, October 13–16, 1992. http://www.isca-speech.org/archive/icslp_1992/i92_0539.html
Merényi E, Farrand WH, Taranik JV, Minor TB (2014) Classification of hyperspectral imagery with neural networks: comparison to conventional tools. EURASIP J Adv Sig Proc 2014:71. https://doi.org/10.1186/1687-6180-2014-71
Mori U, Mendiburu A, Keogh EJ, Lozano JA (2017) Reliable early classification of time series based on discriminating the classes over time. Data Min Knowl Discov 31(1):233–263. https://doi.org/10.1007/s10618-016-0462-1
Mukherjee G, Bhanot G, Raines K, Sastry S, Doniach S, Biehl M (2016) Predicting recurrence in clear cell renal cell carcinoma: Analysis of TCGA data using outlier analysis and generalized matrix LVQ. In: IEEE congress on evolutionary computation, CEC 2016, Vancouver, BC, Canada, July 24–29, 2016, pp 656–661. https://doi.org/10.1109/CEC.2016.7743855
Nadeem MSA, Zucker J, Hanczar B (2010) Accuracy-rejection curves (arcs) for comparing classification methods with a reject option. In: Dzeroski S, Geurts P, Rousu J (eds) JMLR Proceedings of the third international workshop on machine learning in systems biology, MLSB 2009, Ljubljana, Slovenia, September 5–6, 2009, vol. 8. JMLR.org., pp 65–81. http://www.jmlr.org/proceedings/papers/v8/nadeem10a.html
Nene SA, Nayar SK, Murase H (1996) Columbia object image library (coil-20). Technical report
Paaßen B, Mokbel B, Hammer B (2016) Adaptive structure metrics for automated feedback provision in intelligent tutoring systems. Neurocomputing 192:3–13. https://doi.org/10.1016/j.neucom.2015.12.108
Pillai I, Fumera G, Roli F (2013) Multi-label classification with a reject option. Pattern Recognit 46(8):2256–2266. https://doi.org/10.1016/j.patcog.2013.01.035
Platt JC (1999) Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Smola AJ (ed) Advances in large margin classifiers. MIT Press, Cambridge, pp 61–74
Price D, Knerr S, Personnaz L, Dreyfus G (1994) Pairwise neural network classifiers with probabilistic outputs. In: Tesauro G, Touretzky DS, Leen TK (eds) Advances in neural information processing systems 7, [NIPS Conference, Denver, Colorado, USA, 1994]. MIT Press, pp 1109–1116http://papers.nips.cc/paper/883-pairwise-neural-network-classifiers-with-probabilistic-outputs
Rodríguez-Fdez I, Canosa A, Mucientes M, Bugarín A (2015) STAC: a web platform for the comparison of algorithms using statistical tests. In: Proceedings of the 2015 IEEE international conference on fuzzy systems (FUZZ-IEEE)
Sato A, Yamada K (1995) Generalized learning vector quantization. In: Touretzky DS, Mozer M, Hasselmo ME (eds) Advances in neural information processing systems 8, NIPS, Denver, CO, November 27–30. MIT Press, pp 423–429. http://papers.nips.cc/paper/1113-generalized-learning-vector-quantization
Schneider P, Biehl B, Hammer B (2010) Hyperparameter learning in probabilistic prototype-based models. Neurocomputing 73(7–9):1117–1124
Schneider P, Biehl M, Hammer B (2009) Adaptive relevance matrices in learning vector quantization. Neural Comput 21(12):3532–3561. https://doi.org/10.1162/neco.2009.11-08-908
Schulz A, Mokbel B, Biehl M, Hammer B ((2015)) Inferring feature relevances from metric learning. In: IEEE symposium series on computational intelligence, SSCI 2015, Cape Town, South Africa, December 7-10, 2015. IEEE, pp 1599–1606. https://doi.org/10.1109/SSCI.2015.225
Seo S, Obermayer K (2003) Soft learning vector quantization. Neural Comput 15(7):1589–1604. https://doi.org/10.1162/089976603321891819
Su J, Vasconcellos Vargas D, Kouichi S (2017) One pixel attack for fooling deep neural networks. ArXiv e-prints
Varshney KR, Alemzadeh H (2016) On the safety of machine learning: cyber-physical systems, decision sciences, and data products. CoRR arXiv:abs/1610.01256
Villmann T, Kaden M, Bohnsack A, Villmann J, Drogies T, Saralajew S, Hammer B (2016) Self-adjusting reject options in prototype based classification. In: Advances in self-organizing maps and learning vector quantization—proceedings of the 11th international workshop WSOM 2016, Houston, Texas, USA, January 6–8, 2016, pp 269–279. https://doi.org/10.1007/978-3-319-28518-4_24
Villmann T, Kästner M, Backhaus A, Seiffert U (2013) Processing hyperspectral data in machine learning. In: 21st European symposium on artificial neural networks, ESANN 2013, Bruges, Belgium, April 24–26, 2013. http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2013-9.pdf
Villmann T, Merényi E, Hammer B (2003) Neural maps in remote sensing image analysis. Neural Netw 16(3–4):389–403. https://doi.org/10.1016/S0893-6080(03)00021-2
de Vries G, Pauws SC, Biehl M (2015) Insightful stress detection from physiology modalities using learning vector quantization. Neurocomputing 151:873–882. https://doi.org/10.1016/j.neucom.2014.10.008
Wu T, Lin C, Weng RC (2004) Probability estimates for multi-class classification by pairwise coupling. J Mach Learn Res 5:975–1005
Yuan M, Wegkamp M (2010) Classification methods with reject option based on convex risk minimization. J Mach Learn Res 11:111–130
Acknowledgements
This research has been funded by the Federal Ministry of Education and Research of Germany in the frame of the project ITS.ML (BMBF Grant Number 01IS18041A).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
This contribution is an extension of the work presented at WSOM+ 2017 under the title “Probabilistic extension and reject options for pairwise LVQ” [7].
Rights and permissions
About this article
Cite this article
Brinkrolf, J., Hammer, B. Time integration and reject options for probabilistic output of pairwise LVQ. Neural Comput & Applic 32, 18009–18022 (2020). https://doi.org/10.1007/s00521-018-03966-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-018-03966-0