Skip to main content
Log in

A solid transportation problem in uncertain environment involving type-2 fuzzy variable

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The main focus of this paper is to develop a new safety-based restricted fixed charge solid transportation problem with type-2 fuzzy parameter that minimizes both cost and time. Here we develop mainly two models, the first one has cost and time as type-2 fuzzy variables and the second one has cost, time and all the other parameters of the solid transportation problem as type-2 fuzzy variables. We also consider restrictions on the amount of transport goods. Both of these models are solved by two different techniques. First is using the usual credibility measure, and second is the generalized credibility measure. For the first technique, we use critical value (CV)-based reduction method to reduce a type-2 fuzzy set into a type-1 fuzzy set and then apply the centroid method to this reduced fuzzy set to find the corresponding crisp value. In the second case, a chance constrained programming model based on generalized credibility has been developed with the help of CV-based reduction method. The equivalent parametric programming problem in deterministic form is then solved under the weighted mean programming technique framework, the global criteria method and with the help of LINGO 13.0 software. Lastly, we have provided two real-life-based numerical examples to illustrate the models and also validate the results with the existing work. Some sensitivity analyses for the models are also presented with some logical comments. Finally the effects of total cost and time due to the changes of credibility levels of cost, time, demand, source, conveyance and safety are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hitchcock FL (1941) The distribution of a product from several sources to numerous localities. J Math Phys 20:224–230

    Article  MathSciNet  Google Scholar 

  2. Balinski ML (1961) Fixed-cost transportation problem. Naval Res Logist 8:41–54

    Article  Google Scholar 

  3. Haley KB (1962) The solid transportation problem. Oper Res Int J 11:446–448

    MATH  Google Scholar 

  4. Kundu P, Kar S, Maiti M (2013) Multi-objective multi-item solid transportation problem in fuzzy environment. Appl Math Model 37:2028–2038

    Article  MathSciNet  Google Scholar 

  5. Liu ST (2006) Fuzzy total transportation cost measures for fuzzy solid transportation problem. Appl Math Comput 174:927–941

    MathSciNet  MATH  Google Scholar 

  6. Ammar EE, Youness EA (2005) Study on multiobjective transportation problem with fuzzy numbers. Appl Math Comput 166:241–253

    MathSciNet  MATH  Google Scholar 

  7. Bit AK, Biswal MP, Alam SS (1993) Fuzzy programming approach to multiobjective solid transportation problem. Fuzzy Sets Syst 57:183–194

    Article  MathSciNet  Google Scholar 

  8. Ojha A, Das B, Mondal S, Maiti M (2009) An entropy based solid transportation problem for general fuzzy costs and time with fuzzy equality. Math Comput Model 501(2):166–178

    Article  MathSciNet  Google Scholar 

  9. Kundu P, Kar S, Maiti M (2015) Multi-item solid transportation problems with type-2 fuzzy parameters. Appl Soft Comput 31:61–80

    Article  Google Scholar 

  10. Mahapatra DR, Roy SK, Biswal MP (2013) Multi-choice stochastic transportation problem involving extreme value distribution. Appl Math Model 37(4):2230–2240

    Article  MathSciNet  Google Scholar 

  11. Baidya A, Bera UK, Maiti M (2013) Multi-item interval valued solid transportation problem with safety measure under fuzzy-stochastic environment. Int J Transp Secur 6(2):151–174

    Article  Google Scholar 

  12. Baidya A, Bera UK, Maiti M (2014) Solution of multi-item interval valued solid transportation problem with safety measure using different methods. Opsearch 51(1):1–22

    Article  MathSciNet  Google Scholar 

  13. Adlakha V, Kowalski K (1999) On the fixed-charge transportation problem. OMEGA Int J Manag Scie 27:381–388

    Article  Google Scholar 

  14. Adlakha V, Kowalski K, Vemuganti RR, Lev B (2007) More-for-less algorithm for fixed-charge transportation problems. OMEGA Int J Manag Sci 35:116–127

    Article  Google Scholar 

  15. Xie F, Jia R (2012) Nonlinear fixed charge transportation problem by minimum cost flow-based genetic algorithm. Comput Ind Eng 63(4):763–778

    Article  Google Scholar 

  16. Raj K, Rajendran C (2012) A genetic algorithm for solving the fixed-charge transportation model: two-stage problem. Comput Oper Res 39:2016–2032

    Article  Google Scholar 

  17. Yang L, Liu L (2007) Fuzzy fixed charge solid transportation problem and algorithm. Appl Soft Comput 7(3):879–889

    Article  Google Scholar 

  18. Yang L, Feng Y (2007) A bicriteria solid transportation problem with fixed charge under stochastic environment. Appl Math Model 31:2668–2683

    Article  Google Scholar 

  19. Ojha A, Das B, Mondal S, Maiti M (2010) A solid transportation problem for an item with fixed charge, vehicle cost and price discounted varying charge using genetic algorithm. Appl Soft Comput 10:100–110

    Article  Google Scholar 

  20. Kundu P, Kar S, Maiti M (2014) Fixed charge transportation problem with type-2 fuzzy variables. Inf Sci 255:170–186

    Article  MathSciNet  Google Scholar 

  21. Zadeh LA (1975) Concept of a linguistic variable and its application to approximate reasoning I. Inf Sci 8:199–249

    Article  MathSciNet  Google Scholar 

  22. Yager RR (1980) Fuzzy subsets of type-II in decisions. J Cybern 10(1–3):137–159

    Article  MathSciNet  Google Scholar 

  23. Coupland S, John RI (2007) Geometric type-1 and type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 15(1):3–15

    Article  Google Scholar 

  24. Mendel JM (2001) Advances in type-2 fuzzy sets and systems. Inf Sci 177(1):84–110

    Article  MathSciNet  Google Scholar 

  25. Lv Z, Jin H, Yuan P (2009) The theory of triangle type-2 fuzzy sets. In: Proceedings of the 2009 IEEE international conference on computer and information technology, piscataway: IEEE Service Center, pp 57–62

  26. Ling X, Zhang Y (2011) Operations on triangle type-2 fuzzy sets. Procedia Eng 15:3346–3350

    Article  Google Scholar 

  27. Karnik NN, Mendel JM (2001) Centroid of a type-2 fuzzy set. Inf Sci 132:195–220

    Article  MathSciNet  Google Scholar 

  28. Greenfield S, John RI, Coupland S (2005) A novel sampling method for type-2 defuzzification. In: Proceedings of the UKCI 2005, London

  29. Liu F (2008) An efficient centroid type-reduction strategy for general type-2 fuzzy logic system. Inf Sci 178:2224–2236

    Article  MathSciNet  Google Scholar 

  30. Qin R, Liu YK, Liu ZQ (2011) Methods of critical value reduction for type-2 fuzzy variable and their applications. J Comput Appl Math 235:1454–1481

    Article  MathSciNet  Google Scholar 

  31. Liu B, Iwamura K (1998) Chance constrained programming with fuzzy parameters. Fuzzy Sets Syst 94(2):227–237

    Article  MathSciNet  Google Scholar 

  32. Das A, Bera UK, Maiti M (2016) Defuzzification of trapezoidal type-2 fuzzy variables and its application to solid transportation problem. J Intell Fuzzy Syst 30(4):2431–2445

    Article  Google Scholar 

  33. Mendel JM, John RIB (2002) Type-2 fuzzy sets made simple. IEEE Trans Fuzzy Syst 10(2):117–127

    Article  Google Scholar 

  34. Liu ZQ, Liu YK (2010) Type-2 fuzzy variables and their arithmetic. Soft Comput 14:729–747

    Article  Google Scholar 

  35. Yager RR (1981) A procedure for ordering fuzzy subsets of the unit interval. Inf Sci 24:143–161

    Article  MathSciNet  Google Scholar 

  36. Zeng L (2006) Expected value method for fuzzy multiple attribute decision making. Tsinghua Sci Technol 11:102–106

    Article  MathSciNet  Google Scholar 

  37. Liu B, Liu YK (2002) Expected value operator of fuzzy variable and fuzzy expected value models. IEEE Trans Fuzzy Syst 10(4):445–450

    Article  Google Scholar 

  38. Sugeno M (1985) An introductory survey of fuzzy control. Inf Sci 36:59–83

    Article  MathSciNet  Google Scholar 

  39. Dalman H (2016) Uncertain programming model for multi-item solid transportation problem. Int J Mach Learn Cybern. https://doi.org/10.1007/s13042-016-0538-7

    Article  MATH  Google Scholar 

  40. Chen L, Peng J, Zhang B (2017) Uncertain goal programming models for bicriteria solid transportation problem. Appl Soft Comput 51:49–59

    Article  Google Scholar 

  41. Das A, Bera UK, Maiti M (2017) A profit maximizing solid transportation model under a rough interval approach. IEEE Trans Fuzzy Syst 25(3):485–498

    Article  Google Scholar 

  42. Das A, Bera UK, Maiti M (2016) A breakable multi-item multi stage solid transportation problem under budget with Gaussian type-2 fuzzy parameters. Appl Intell 45(3):923–951

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to the editor and the anonymous reviewers for their suggestions which have led to an improvement in both the quality and clarity of the paper. Dr. Bera acknowledges the financial assistance from Department of Science and Technology, New Delhi, under the Research Project (F.No. SR/S4/MS:761/12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrit Das.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Details on type-2 fuzzy set

Appendix: Details on type-2 fuzzy set

A type-1 fuzzy set is a set whose elements have degrees of membership. In classical set theory, the membership of elements in a set is assessed in binary terms according to a bivalent condition—an element either belongs or does not belong to the set. By contrast, fuzzy set theory permits the gradual assessment of the membership of elements in a set; this is described with the aid of a MF valued in the real unit interval [0, 1]. In this whole paper the word “fuzzy” defines this fuzzy variable and denoted \( \tilde{A} \).

1.1 Type-2 fuzzy set (T2 FS)

Type-2 fuzzy set \( \tilde{A} \) defined on a universe of discourse \( X \), which is denoted as \( \tilde{A} \subseteq X, \) is a set of pairs \( \left\{ {x, \mu_{{\tilde{A}}} \left( x \right)} \right\}, \) where \( x \) an element of a fuzzy set is, and its grade of membership \( \mu_{{\tilde{A}}} \left( x \right) \) in the fuzzy set \( \tilde{A} \) is a type-1 fuzzy set defined in the interval \( J_{x} \subset \left[ {0, 1} \right], \) i.e., A T2 FS \( \tilde{A} \) defined by Mendel and John [33] is

$$ \tilde{A} = \left\{ {\left( {\left( {x, u} \right), \mu_{{\tilde{A}}} \left( {x,u} \right)} \right): \quad \forall x \in X, J_{x} \subset \left[ {0, 1} \right]} \right\}, $$

where \( 0 \le \mu_{{\tilde{A}}} \left( {x,u} \right) \le 1 \) is the type-2 MF.

For numerical examples on type-2 fuzzy set readers are referred to Kundu et al. [20].

1.2 Regular fuzzy variable (RFV)

For a possibility space [34] (φ, p, Pos), a regular fuzzy variable \( \tilde{\xi } \) is defined as a measurable map from φ to [0, 1] in the sense that for every \( t \) ∈ [0, 1], one has \( \left\{ {\gamma \in \varphi | \tilde{\xi }\left( \gamma \right) \le t} \right\} \in p. \)

A discrete RFV is represented as \( \tilde{\xi }\sim\left( {\begin{array}{*{20}c} {r_{1} } & \ldots & {r_{n} } \\ {\mu_{1} } & \ldots & {\mu_{n} } \\ \end{array} } \right), \) where \( r_{i} \in \left[ {0, 1} \right] \,{\text{and }}\, \mu_{i} > 0, \forall i\, {\text{and}}\, {\text{max}}_{i } \left\{ {\mu_{i} } \right\} = 1 \).

If \( \tilde{\xi } = \left( {r_{1} , r_{2} , r_{3} } \right) \) with 0 ≤ \( r_{1} < r_{2} < r_{3} \le 1, \) then \( \tilde{\xi } \) is called a triangular RFV.

1.3 Critical values (CVs) for RFVs

Qin et al. [30] introduced three kinds of critical values (CVs). Let \( \tilde{\xi } \) be a RFV. Then:

  1. 1.

    The optimistic CV of \( \tilde{\xi } \), denoted by CV*[\( \tilde{\xi } \)], is given by,

    (15)
  2. 2.

    The pessimistic CV of \( \tilde{\xi } \), denoted by \( CV_{*} \)[\( \tilde{\xi } \)], is given by,

    (16)
  3. 3.

    The CV of \( \tilde{\xi } \), denoted by CV[\( \tilde{\xi } \)], is given by

    (17)

Numerical examples of critical values are available in Kundu et al. [20].

1.4 The following theorems introduced the critical values (CVs) of trapezoidal and triangular RFVs

1.4.1 Theorem (Qin et al. [30])

Let \( \tilde{\xi } = \left( {r_{1} ,r_{2} , r_{3} ,r_{4} } \right) \) be a trapezoidal RFV. Then we have

  1. 1.

    The optimistic CV of \( \tilde{\xi } \) is \( {\text{CV}}^{*} \left[ { \tilde{\xi }} \right] = r_{4} /\left( {1 + r_{4} - r_{3} } \right) \).

  2. 2.

    The pessimistic CV of \( \tilde{\xi } \) is \( {\text{CV}}_{ *} \)\( \tilde{\xi } \) = \( r_{2} /\left( {1 + r_{2} - r_{1} } \right) \).

  3. 3.

    The CV of \( \tilde{\xi } \) is

    $$ {\text{CV}}\left[ { \tilde{\xi }} \right] = \left\{ {\begin{array}{*{20}l} {\frac{{ 2r_{2} - r_{1} }}{{1 + 2\left( {r_{2} - r_{1} } \right)}},} \hfill & {{\text{if}}\quad r_{2} > \frac{1}{2} } \hfill \\ {\frac{1}{2},} \hfill & { {\text{if}}\quad r_{2} \le \frac{1}{2} < r_{3} } \hfill \\ {\frac{{r_{4} }}{{\left( {1 + 2\left( {r_{4} - r_{3} } \right)} \right)}} } \hfill & {{\text{if}}\quad r_{3} \le \frac{1}{2}} \hfill \\ \end{array} } \right. $$

For numerical examples readers are referred to Qin et al. [30].

1.4.2 Theorem (Qin et al. [30])

Let \( \tilde{\xi } = \left( {r_{1} ,r_{2} , r_{3} } \right) \) be a triangular RFV. Then we have:

  1. 1.

    The optimistic CV of \( \tilde{\xi } \) is \( {\text{CV}}^{*} \left[ { \tilde{\xi }} \right] = r_{3} /\left( {1 + r_{3} - r_{2} } \right) \).

  2. 2.

    The pessimistic CV of \( \tilde{\xi } \) is \( {\text{CV}}_{ *} \left[ { \tilde{\xi }} \right] = r_{2} /\left( {1 + r_{2} - r_{1} } \right) \).

  3. 3.

    The CV of \( \tilde{\xi } \) is

    $$ {\text{CV}}\left[ { \tilde{\xi }} \right] = \left\{ {\begin{array}{*{20}l} {\frac{{ 2r_{2} - r_{1} }}{{1 + 2\left( {r_{2} - r_{1} } \right)}},} \hfill & {{\text{if}}\quad r_{2} > \frac{1}{2}} \hfill \\ {\frac{{ r_{3} }}{{1 + 2\left( {r_{3} - r_{2} } \right)}},} \hfill & {{\text{if}}\quad r_{2} \le \frac{1}{2}} \hfill \\ \end{array} } \right. $$

For numerical examples readers are referred to Qin et al. [30].

1.5 CV-based reduction method for type-2 fuzzy variable

In type-2 fuzzy set, the MF itself is a fuzzy set. So computation related to type-2 fuzzy is a very difficult job. To avoid this difficulty, some defuzzification methods and methodologies have been used for defuzzification of type-2 fuzzy variable. Since we cannot apply the methodologies that are related to type-1 fuzzy sets directly to the type-2 fuzzy sets, we reduce the type-2 fuzzy sets into type-1 fuzzy sets at first and then apply the methodologies. There are several researchers who have developed different methods to defuzzify a type-2 fuzzy sets. Recently Qin et al. [30] introduced a new method named as CV-based reduction method that reduces type-2 fuzzy variables into a type-1 fuzzy variable which may or may not be normal. This method is basically based to find out three critical values and these are optimistic CV denoted as \( {\text{CV}}^{*} \left[ { \tilde{\xi }} \right] \), pessimistic CV denoted as \( {\text{CV}}_{ *} \left[ { \tilde{\xi }} \right] \) and CV reduction denoted as \( {\text{CV}}\left[ { \tilde{\xi }} \right] \). Using these critical values we easily reduce a type-2 fuzzy variable into a type-1 fuzzy variable. The detail explanation of CV reduction method with an example is presented in Qin et al. [30].

1.5.1 Theorem (Qin et al. [30])

Let \( \tilde{\xi } = \left( {r_{1} , r_{2} , r_{3} ; \theta_{l} , \theta_{r} } \right) \) be a type-2 triangular fuzzy variables. Then we have:

  1. 1.

    Using the optimistic CV reduction method, the reduction \( \xi_{1} \) of \( \tilde{\xi } \) has the following possibility distribution

    $$ \mu_{{\tilde{\xi }_{1} }} \left( x \right) = \left\{ {\begin{array}{*{20}l} {\frac{{(1 + \theta_{r} )(x - r_{1} )}}{{r_{2} - r_{1} + \theta_{r} (x - r_{1} )}},} \hfill & {{\text{if}}\quad x \in \left[ { r_{1} ,\frac{{r_{1} + r_{2} }}{2} } \right]} \hfill \\ {\frac{{\left( {1 - \theta_{r} } \right)x + \theta_{r} r_{2} - r_{1} }}{{r_{2} - r_{1} + \theta_{r} \left( {r_{2} - r_{1} } \right)}},} \hfill & {{\text{if}}\quad x \in \left( { \frac{{r_{1} + r_{2} }}{2},r_{2} } \right]} \hfill \\ {\frac{{\left( { - 1 + \theta_{r} } \right)x - \theta_{r} r_{2} + r_{3} }}{{r_{3} - r_{2} + \theta_{r} \left( {x - r_{2} } \right)}},} \hfill & {{\text{if}}\quad x \in \left[ { r_{2} ,\frac{{r_{2} + r_{3} }}{2} } \right]} \hfill \\ {\frac{{\left( {1 + \theta_{r} } \right)( r_{3} - x)}}{{r_{3} - r_{2} + \theta_{r} \left( {r_{3} - x} \right)}},} \hfill & {{\text{if}}\quad x \in \left( { \frac{{r_{2} + r_{3} }}{2},r_{3} } \right]} \hfill \\ \end{array} } \right. $$
  2. 2.

    Using the pessimistic CV reduction method, the reduction \( \xi_{2} \) of \( \tilde{\xi } \) has the following possibility distribution

    $$ \mu_{{\xi_{2} }} \left( x \right) = \left\{ {\begin{array}{*{20}l} {\frac{{(x - r_{1} )}}{{r_{2} - r_{1} + \theta_{l} (x - r_{1} )}},} \hfill & {{\text{if}}\quad x \in \left[ { r_{1} ,\frac{{r_{1} + r_{2} }}{2} } \right]} \hfill \\ {\frac{{(x - r_{1} )}}{{r_{2} - r_{1} + \theta_{l} \left( {r_{2} - x} \right)}},} \hfill & {{\text{if}}\quad x \in \left( { \frac{{r_{1} + r_{2} }}{2},r_{2} } \right]} \hfill \\ {\frac{{(r_{3} - x)}}{{r_{3} - r_{2} + \theta_{l} \left( {x - r_{2} } \right)}},} \hfill & {{\text{if}}\quad x \in \left[ { r_{2} ,\frac{{r_{2} + r_{3} }}{2} } \right]} \hfill \\ {\frac{{( r_{3} - x)}}{{r_{3} - r_{2} + \theta_{l} \left( {r_{3} - x} \right)}},} \hfill & {{\text{if}}\quad x \in \left( { \frac{{r_{2} + r_{3} }}{2},r_{3} } \right]} \hfill \\ \end{array} } \right. $$

Using the CV reduction method, the reduction \( \xi_{3} \) of \( \tilde{\xi } \) has the following possibility distribution

$$ \mu_{{\xi_{3} }} \left( x \right) = \left\{ {\begin{array}{*{20}l} {\frac{{(1 + \theta_{r} )(x - r_{1} )}}{{r_{2} - r_{1} + 2\theta_{r} (x - r_{1} )}},} \hfill & {{\text{if}}\quad x \in \left[ { r_{1} ,\frac{{r_{1} + r_{2} }}{2} } \right]} \hfill \\ {\frac{{\left( {1 - \theta_{r} } \right)x + \theta_{r} r_{2} - r_{1} }}{{r_{2} - r_{1} + 2\theta_{l} \left( {r_{2} - x} \right)}},} \hfill & {{\text{if}}\quad x \in \left( { \frac{{r_{1} + r_{2} }}{2},r_{2} } \right]} \hfill \\ {\frac{{\left( { - 1 + \theta_{l} } \right)x - \theta_{l} r_{2} + r_{3} }}{{r_{3} - r_{2} + 2\theta_{l} \left( {x - r_{2} } \right)}},} \hfill & {{\text{if}}\quad x \in \left[ { r_{2} ,\frac{{r_{2} + r_{3} }}{2} } \right]} \hfill \\ {\frac{{\left( {1 + \theta_{r} } \right)( r_{3} - x)}}{{r_{3} - r_{2} + 2\theta_{r} \left( {r_{3} - x} \right)}},} \hfill & {{\text{if}}\quad x \in \left( { \frac{{r_{2} + r_{3} }}{2},r_{3} } \right]} \hfill \\ \end{array} } \right. $$

It can be noted that type-1 fuzzy variable obtained by CV-based reduction methods is not always normalized. For such cases, we cannot use the usual credibility measure; here we have to use generalized credibility measure \( \widetilde{C}r \).

The following theorem finds the crisp equivalent forms of constraints involving type-2 triangular fuzzy variables, using generalized creditability measure for the reduced fuzzy variable from type-2 triangular fuzzy variable by CV reduction method.

1.5.2 Theorem (Qin et al. [30])

Suppose \( \xi_{i} \) be the reduction of type-2 fuzzy variable \( \tilde{\xi }_{i} = \left( {\tilde{r}_{1}^{i} ,\tilde{r}_{2}^{i} ,\tilde{r}_{3}^{i} ; \theta_{l, i} , \theta_{r, i} } \right) \) obtained by the CV reduction method for \( i = 1, 2, . . . , n \) and \( \xi_{1} , \xi_{2} , . . . . , \xi_{n} \) are mutually independent, and \( k_{i} \ge 0 \) for \( i = 1, 2, . . . , n \).

  1. 1.

    Given the generalized credibility level \( \alpha \in \left( {0, 0.5} \right] \), if \( \alpha \in \left( {0, 0.25} \right] \), then \( \widetilde{C}r\left\{ {\sum\nolimits_{i = 1}^{n} {k_{i} \xi_{i} \le t} } \right\} \ge \alpha \) is equivalent to

    $$ \mathop \sum \limits_{i = 1}^{n} \frac{{\left( {1 - 2\alpha + \left( {1 - 4\alpha } \right)\theta_{r, i} } \right)k_{i} r_{1}^{i} + 2\alpha k_{i} r_{2}^{i} }}{{1 + \left( {1 - 4\alpha } \right)\theta_{r, i} }} \le t, $$

    and if \( \alpha \in \left( {0.25, 0.5} \right] \), then \( \widetilde{C}r\left\{ {\sum\nolimits_{i = 1}^{n} {k_{i} \xi_{i} \le t} } \right\} \ge \alpha \) is equivalent to

    $$ \mathop \sum \limits_{i = 1}^{n} \frac{{\left( {1 - 2\alpha } \right)k_{i} r_{1}^{i} + \left( {2\alpha + \left( {4\alpha - 1} \right)\theta_{l, i} } \right)k_{i} r_{2}^{i} }}{{1 + \left( {4\alpha - 1} \right)\theta_{l, i} }} \le t, $$
  2. 2.

    Given the generalized credibility level \( \alpha \in \left( {0.5, 1} \right] \), if \( \alpha \in \left( {0.5, 0.75} \right] \), then \( \widetilde{C}r\left\{ {\sum\nolimits_{i = 1}^{n} {k_{i} \xi_{i} \le t} } \right\} \ge \alpha \) is equivalent to

    $$ \mathop \sum \limits_{i = 1}^{n} \frac{{\left( {2\alpha - 1} \right)k_{i} r_{3}^{i} + \left( {2\left( {1 - \alpha } \right) + \left( {3 - 4\alpha } \right)\theta_{l, i} } \right)k_{i} r_{2}^{i} }}{{1 + \left( {3 - 4\alpha } \right)\theta_{l, i} }} \le t, $$

    and if \( \alpha \in \left( {0.75, 1} \right] \), then \( \widetilde{C}r\left\{ {\sum\nolimits_{i = 1}^{n} {k_{i} \xi_{i} \le t} } \right\} \ge \alpha \) is equivalent to

    $$ \mathop \sum \limits_{i = 1}^{n} \frac{{\left( {2\alpha - 1 + \left( {4\alpha - 3} \right)\theta_{r, i} } \right)k_{i} r_{3}^{i} + 2\left( {1 - \alpha } \right)k_{i} r_{2}^{i} }}{{1 + \left( {4\alpha - 3} \right)\theta_{r, i} }} \le t. $$
1.5.2.1 Corollary

With the help of the above theorem, we can also find an equivalent expression for \( \widetilde{C}r\left\{ {\sum\nolimits_{i = 1}^{n} {k_{i} \xi_{i} \le t} } \right\} \ge \alpha \) as follows:

As we know,

$$ \widetilde{Cr}\left\{ {\mathop \sum \limits_{i = 1}^{n} k_{i} \xi_{i} \ge t} \right\} \ge \alpha \Rightarrow \widetilde{Cr}\left\{ {\mathop \sum \limits_{i = 1}^{n} - k_{i} \xi_{i} \le - t} \right\} \ge \alpha \Rightarrow \widetilde{Cr}\left\{ {\mathop \sum \limits_{i = 1}^{n} k_{i} \xi_{i}^{\prime } \le t^{\prime } } \right\} \ge \alpha , $$

where \( \xi_{i}^{\prime } = - \xi_{i} \) is the reduction of \( - \, \tilde{\xi }_{i} = \left( { - \,\tilde{r}_{1}^{i} , - \,\tilde{r}_{2}^{i} , - \,\tilde{r}_{3}^{i} ; \theta_{r, i} , \theta_{l, i} } \right) \) and \( - \,t = t^{\prime } \).

Now using [21] of the theorem (“Regular fuzzy variable (RFV)” section in Appendix ), given the generalized credibility level \( \alpha \in \left( {0, 0.5} \right] \), if \( \alpha \in \left( {0, 0.25} \right] \), then \( \widetilde{C}r\left\{ {\sum\nolimits_{i = 1}^{n} {k_{i} \xi_{i} \le t} } \right\} \ge \alpha \) is equivalent to

$$ \mathop \sum \limits_{i = 1}^{n} \frac{{\left( {1 - 2\alpha + \left( {1 - 4\alpha } \right)\theta_{l, i} } \right)k_{i} \left( { - r_{3}^{i} } \right) + 2\alpha k_{i} \left( { - r_{2}^{i} } \right)}}{{1 + \left( {1 - 4\alpha } \right)\theta_{l, i} }} \le t^{\prime } = - t, $$

which implies

$$ \mathop \sum \limits_{i = 1}^{n} \frac{{\left( {1 - 2\alpha + \left( {1 - 4\alpha } \right)\theta_{l, i} } \right)k_{i} \left( {r_{3}^{i} } \right) + 2\alpha k_{i} \left( {r_{2}^{i} } \right)}}{{1 + \left( {1 - 4\alpha } \right)\theta_{l, i} }} \ge t, $$

and if \( \alpha \in \left( {0.25, 0.5} \right] \), then \( \widetilde{C}r\left\{ {\sum\nolimits_{i = 1}^{n} {k_{i} \xi_{i} \le t} } \right\} \ge \alpha \) is equivalent to

$$ \mathop \sum \limits_{i = 1}^{n} \frac{{\left( {1 - 2\alpha } \right)k_{i} \left( { - r_{3}^{i} } \right) + \left( {2\alpha + \left( {4\alpha - 1} \right)\theta_{r, i} } \right)k_{i} \left( { - r_{2}^{i} } \right)}}{{1 + \left( {4\alpha - 1} \right)\theta_{r, i} }} \le - t, $$

which implies

$$ \mathop \sum \limits_{i = 1}^{n} \frac{{\left( {1 - 2\alpha } \right)k_{i} \left( {r_{3}^{i} } \right) + \left( {2\alpha + \left( {4\alpha - 1} \right)\theta_{r, i} } \right)k_{i} \left( {r_{2}^{i} } \right)}}{{1 + \left( {4\alpha - 1} \right)\theta_{r, i} }} \le t, $$

For different values of \( \alpha \), the similar equivalent expression can be obtained.

1.6 Defuzzification of a type-2 fuzzy variable by CV-based reduction method

The defuzzification process of a type-2 fuzzy variable has two stages. In the first stage, the type-2 fuzzy variable is reduced to its corresponding type-1 fuzzy variable and in the second stage the crisp value is obtained by applying different defuzzification methods like as centroid method [35], expected value method [36, 37] to the reduced fuzzy variables. In this paper, we first apply the CV-based reduction method to the type-2 fuzzy variables, so that we get type-reduced form, i.e., a type-1 fuzzy variable and then we apply the centroid method to the type-1 fuzzy variables, resulting a crisp value.

1.6.1 Centroid defuzzification technique

The centroid method is also known as center of gravity or center of area defuzzification. It was first proposed by Sugeno [38] in 1985. It is the most commonly used method and is more accurate compared to other existing methods. The method can be expressed as

$$ x^{*} = \left\{ {\begin{array}{*{20}l} {\frac{{\mathop \sum \nolimits_{i = 1}^{n} x_{i} \mu_{\xi } \left( {x_{i} } \right)}}{{\mathop \sum \nolimits_{i = 1}^{n} \mu_{\xi } \left( {x_{i} } \right)}},} \hfill & {{\text{for}}\,{\text{discrete}}\,{\text{case}},} \hfill \\ {\frac{{\smallint x_{i} \mu_{\xi } \left( {x_{i} } \right){\text{d}}x}}{{\smallint \mu_{\xi } \left( {x_{i} } \right)}}, } \hfill & {{\text{for}}\,{\text{continuous}}\, {\text{case}}.} \hfill \\ \end{array} } \right. $$

where \( \xi = (\xi_{1} , \xi_{2} , \ldots , \xi_{n} ) \) is a fuzzy variable, \( x^{*} \) is the corresponding crisp value to be obtained, \( \mu_{\xi } \left( {x_{i} } \right) \) is the aggregated MF, and x is the output variable.

Numerical examples of crisp conversion of TRS using the centroid method are available in Kundu et al. [20].

Here it should be mentioned that the \( {\text{CV}} \)-based reduction method gives the more centroid compromised crisp value, compared to the optimistic \( {\text{CV}}^{*} \) and pessimistic \( {\text{CV}}_{*} \) as these values are evaluated using the possibility and necessity measures, respectively, whereas the \( {\text{CV}} \) reduction method is based on the average of these two measures.

The entire defuzzification process of a type-2 fuzzy set is depicted in Fig. 4.

Fig. 4
figure 4

Defuzzification process of a type-2 fuzzy variable

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Bera, U.K. & Maiti, M. A solid transportation problem in uncertain environment involving type-2 fuzzy variable. Neural Comput & Applic 31, 4903–4927 (2019). https://doi.org/10.1007/s00521-018-03988-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-03988-8

Keywords

Navigation