Skip to main content
Log in

System of type-2 fuzzy differential equations and its applications

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper develops the mathematical framework and the solution of a system of type-2 fuzzy ordinary differential equations (T2FDE). The theory of T2FDEs is developed with type-2 fuzzy initial values, type-2 fuzzy boundary values and type-2 fuzzy parameters. Some natural phenomena can be modelled as dynamical systems whose initial conditions and/or parameters may be imprecise in nature. The imprecision of initial values and/or parameters is generally modelled by fuzzy sets. Here, the concept of generalized H2-differentiability, based on the extension of the class of differentiable type-2 fuzzy mappings or Hukuhara derivatives, is applied. Numerical simulations of type-2 fuzzy differential equations have also been developed. Several illustrative examples have been provided for different T2FDE models related to environmental dynamics and problems in mathematical biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Abbasbandy S, Viranloo TA, López-Pouso O, Nieto JJ (2004). Numerical methods forfuzzy differential inclusions. Comput Math Appl 48:10–11

    Article  Google Scholar 

  2. Blasi de FS, Myjak J (1985) On the solution sets for differential inclusions. Bull Acad Polon Sci 33:17–23

    MathSciNet  MATH  Google Scholar 

  3. Bandyopadhyay A, Kar S (2012) Fuzzy continuous dynamic system: A multivariate optimization technique. In: Fuzzy Information Processing Society (NAFIPS), Annual Meeting of the North American. 1–7

  4. Bede B, Gal SG (2005) Generalizations of the differentiability of fuzzy number valued functions with applications to fuzzy differential equations. Fuzzy Set Syst 151:581–599

    Article  MathSciNet  Google Scholar 

  5. Bonarini A, Bontempi G (1994) A qualitative simulation approach for fuzzy dynamic models. ACM Transect Comput Simul 4:285–313

    Article  Google Scholar 

  6. Castillo O, Melin P (2008) Type-2 fuzzy logic: theory and applications. Springer, Berlin 29–43

    Chapter  Google Scholar 

  7. Cano YC, Flores HR (2008) On new solutions of fuzzy differential equations. Chaos, Solitons Fractals 38:112–119

    Article  MathSciNet  Google Scholar 

  8. Cano YC, Flores HR (2013) Some remarks on fuzzy differential equations via differential inclusions. Fuzzy Sets Syst 230:3–20

    Article  MathSciNet  Google Scholar 

  9. Chang SL, Zadeh LA (1972) On fuzzy mapping and control. IEEE Trans Syst Man Cybern 2:30–34

    Article  MathSciNet  Google Scholar 

  10. Diamond P (1999) Time dependent differential inclusions, cocycle attractors and fuzzy differential equations. IEEE Trans Fuzzy Syst 7:734–740

    Article  Google Scholar 

  11. Dubois D, Prade H (1982) Towards fuzzy differential calculus part 3: differentiation. Fuzzy Sets Syst 8(3):225–233

    Article  Google Scholar 

  12. Ghazanfari B, Niazi S, Ghazanfari AG (2012) Linear matrix differential dynamical systems with fuzzy matrices. Appl Math Model 36(1):348–356

    Article  MathSciNet  Google Scholar 

  13. Hamrawi H (2011) Type-2 fuzzy alpha-cuts, De Montfort University, Ph.D. thesis

  14. Hamrawi H, Coupland S, John R (2010) A novel alpha-cut representation for type-2 fuzzy sets. IEEE Int Conf Fuzzy Syst 1–8

  15. Hamrawi H S, (2009) Coupland, type-2 fuzzy arithmetic using alpha-planes. In: Proceedings of IFSA-EUSFLAT, Portugal, 606–611

  16. Hindmarsh JL, Rose RM (1982) Nature London 296:162

    Article  Google Scholar 

  17. Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Ent 91:385–398

    Article  Google Scholar 

  18. Hüllermeier E (1997) An approach to modelling and simulation of uncertain dynamic systems Fuzziness. Knowl-Based Syst 5:117

    Article  Google Scholar 

  19. Kaleva O (1987) Fuzzy differential equations. Fuzzy Set Syst 24:301–317

    Article  MathSciNet  Google Scholar 

  20. Kar TK (2010) Chakraborty, K, Effort dynamics in a prey-predator model with harvesting. Int J Inf Syst Sci 6(3):318–332

    MathSciNet  MATH  Google Scholar 

  21. Kaufmann A, Gupta M (1985) Introduction to fuzzy arithmetic theory and applications. Van Nostran Reinhold Co., Inc., New York

    MATH  Google Scholar 

  22. Khastan A, López RR (2015) On periodic solutions to first order linear fuzzy differential equations under differential inclusions’ approach. Inf Sci 322:31–50

    Article  MathSciNet  Google Scholar 

  23. Khastan A, López RR (2016) On the solutions to first order linear fuzzy differential equations. Fuzzy Sets Syst 295:114–135

    Article  MathSciNet  Google Scholar 

  24. Klir G, Yuan B (1995) Fuzzy sets and fuzzy logic: theory and applications. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  25. Lotka AJ (1920) Analytical note on certain rhythmic relations in organic systems. In: Proceedings of National Academy of Science U.S. 6, 410–415

    Article  Google Scholar 

  26. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141

    Article  Google Scholar 

  27. Mahata A, Roy B, Mondal SP, Alam S (2017) Application of ordinary differential equation in glucose-insulin regulatory system modeling in fuzzy environment. Ecol Genet Genomics 3(5):60–66

    Article  Google Scholar 

  28. Mazandarani M, Najariyan M (2014) Differentiability of type-2 fuzzy number-valued functions. Commun Nonlinear Sci Numer Simul 19:710–725

    Article  MathSciNet  Google Scholar 

  29. Mendel JM (2007) Type-2 fuzzy sets and systems: an overview. IEEE Comput Intell Mag 2(2):20–29

    Article  Google Scholar 

  30. Mosleh M (2013) Fuzzy neural network for solving a system of fuzzy differential equations. Appl Soft Comput 13(8):3597–3607

    Article  Google Scholar 

  31. Mukherjee D (2003) Stability analysis of a stochastic model forprey-predator system with disease in the prey. Nonlinear Anal: Modell Control 8(2):83–92

    MATH  Google Scholar 

  32. Puri M, Ralescu D (1983) Differential and fuzzy functions. J Math Anal Appl 91:552–558

    Article  MathSciNet  Google Scholar 

  33. Raczynski S (1996) Differential inclusions in system simulation. Trans Soc Comput Simul 13(1):47–54

    Google Scholar 

  34. Flores HR, Medar MR (2002) Embedding of level-continuous fuzzy sets on Banach spaces. Inform Sci 144:227–247

    Article  MathSciNet  Google Scholar 

  35. Salahshour S, Allahviranloo T, Abbasbandy S (2012) Solving fuzzy fractional differential equations by fuzzy Laplace transforms. Commun Nonlinear Sci Numer Simul 17(3):1372–1381

    Article  MathSciNet  Google Scholar 

  36. Seikkala S (1987) Towards the theory of fuzzy differential equations. Fuzzy Sets Syst 24:319

    Article  Google Scholar 

  37. Xu X, Zeng Z, Xu J, Zhang M (2017) Fuzzy dynamical system scenario simulation-based cross-border financial contagion analysis: a perspective from international capital flows. IEEE Trans Fuzzy Syst 25(2):439–459

    Article  Google Scholar 

  38. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning-1. Inf Sci 8:199–249

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samarjit Kar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandyopadhyay, A., Kar, S. System of type-2 fuzzy differential equations and its applications. Neural Comput & Applic 31, 5563–5593 (2019). https://doi.org/10.1007/s00521-018-3380-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3380-x

Keywords

Navigation