Skip to main content
Log in

Learning–interaction–diversification framework for swarm intelligence optimizers: a unified perspective

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Due to the efficiency and efficacy in performance to tackle complex optimization problems, swarm intelligence (SI) optimizers, newly emerged as nature-inspired algorithms, have gained great interest from researchers over different fields. A large number of SI optimizers and their extensions have been developed, which drives the need to comprehensively review the characteristics of each algorithm. Hence, a generalized framework laid upon the fundamental principles from which SI optimizers are developed is crucial. This research takes a multidisciplinary view by exploring research motivations from biology, psychology, computing and engineering. A learning–interaction–diversification (LID) framework is proposed where learning is to understand the individual behavior, interaction is to describe the swarm behavior, and diversification is to control the population performance. With the LID framework, 22 state-of-the-art SI algorithms are characterized, and nine representative ones are selected to review in detail. To investigate the relationships between LID properties and algorithmic performance, LID-driven experiments using benchmark functions and real-world problems are conducted. Comparisons and discussions on learning behaviors, interaction relations and diversity control are given. Insights of the LID framework and challenges are also discussed for future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Beni G, Wang J (1993) Swarm intelligence in cellular robotic systems. Springer, Berlin, pp 703–712

    Google Scholar 

  2. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, New York

    MATH  Google Scholar 

  3. Das S, Abraham A, Konar A (2008) Swarm intelligence algorithms in bioinformatics. Springer, Berlin, pp 113–147

    Google Scholar 

  4. Mavrovouniotis M, Li CH, Yang SX (2017) A survey of swarm intelligence for dynamic optimization: algorithms and applications. Swarm Evol Comput 33:1–17

    Google Scholar 

  5. Parpinelli RS, Lopes HS (2011) New inspirations in swarm intelligence: a survey. Int J Bioinspir Comut 3(1):1–16

    Google Scholar 

  6. Yang XS, Deb S, Zhao YX, Fong S, He X (2017) Swarm intelligence: past, present and future. Soft Comput. https://doi.org/10.1007/s00500-017-2810-5

    Article  Google Scholar 

  7. Colorni A, Dorigo M, Maniezzo V (1991) Distributed optimization by ant colonies. In: Proceedings of the first European conference on artificial life, pp 134–142

  8. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B Cybern 26(1):29–41

    Google Scholar 

  9. Ghasemi E (2017) Particle swarm optimization approach for forecasting backbreak induced by bench blasting. Neural Comput Appl 28(7):1855–1862

    Google Scholar 

  10. Jordehi AR (2014) Particle swarm optimisation for dynamic optimisation problems: a review. Neural Comput Appl 25(7–8):1507–1516

    Google Scholar 

  11. Milner S, Davis C, Zhang H, Llorca J (2012) Nature-inspired self-organization, control, and optimization in heterogeneous wireless networks. IEEE Trans Mob Comput 11(7):1207–1222

    Google Scholar 

  12. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks proceedings, pp 1942–1948

  13. Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: Proceedings of IEEE world conference on computational intelligence, pp 69–73

  14. Akay B, Karaboga D (2015) A survey on the applications of artificial bee colony in signal, image, and video processing. SIViP 9(4):967–990

    Google Scholar 

  15. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471

    MathSciNet  MATH  Google Scholar 

  16. Kumar Y, Sahoo G (2017) A two-step artificial bee colony algorithm for clustering. Neural Comput Appl 28(3):537–551

    Google Scholar 

  17. Rajasekhar A, Lynn N, Das S, Suganthan PN (2017) Computing with the collective intelligence of honey bees—a survey. Swarm Evol Comput 32:25–48

    Google Scholar 

  18. Dorigo M, Blum C (2005) Ant colony optimization theory: a survey. Theor Comput Sci 344(2–3):243–278

    MathSciNet  MATH  Google Scholar 

  19. Banks A, Vincent J, Anyakoha C (2007) A review of particle swarm optimization. Part I: background and development. Nat Comput 6(4):467–484

    MathSciNet  MATH  Google Scholar 

  20. Banks A, Vincent J, Anyakoha C (2007) A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat Comput 7(1):109–124

    MATH  Google Scholar 

  21. Neshat M, Sepidnam G, Sargolzaei M, Toosi AN (2014) Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications. Artif Intell Rev 42(4):965–997

    Google Scholar 

  22. Karaboga D, Akay B (2009) A survey: algorithms simulating bee swarm intelligence. Artif Intell Rev 31(1–4):61–85

    Google Scholar 

  23. Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2014) A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif Intell Rev 42(1):21–57

    Google Scholar 

  24. Li JQ, Pan QK, Duan PY (2016) An improved artificial bee colony algorithm for solving hybrid flexible flowshop with dynamic operation skipping. IEEE Trans Cybern 46(6):1311–1324

    Google Scholar 

  25. Fister I, Perc M, Kamal SM, Fister I (2015) A review of chaos-based firefly algorithms: perspectives and research challenges. Appl Math Comput 252:155–165

    MathSciNet  MATH  Google Scholar 

  26. Fister I Jr, Yang X-S, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evol Comput 13:34–46

    Google Scholar 

  27. Cheung NJ, Ding XM, Shen HB (2017) A nonhomogeneous cuckoo search algorithm based on quantum mechanism for real parameter optimization. IEEE Trans Cybern 47(2):391–402

    Google Scholar 

  28. Yang X-S, Deb S (2014) Cuckoo search: recent advances and applications. Neural Comput Appl 24(1):169–174

    Google Scholar 

  29. Duan H, Luo Q (2015) New progresses in swarm intelligence-based computation. Int J Bioinspired Comput 7(1):26–35

    Google Scholar 

  30. Giagkiozis I, Purshouse RC, Fleming PJ (2015) An overview of population-based algorithms for multi-objective optimisation. Int J Syst Sci 46(9):1572–1599

    MathSciNet  MATH  Google Scholar 

  31. Kar AK (2016) Bio inspired computing—a review of algorithms and scope of applications. Expert Syst Appl 59:20–32

    Google Scholar 

  32. Zelinka I (2015) A survey on evolutionary algorithms dynamics and its complexity—mutual relations, past, present and future. Swarm Evol Comput 25:2–14

    Google Scholar 

  33. Ab Wahab MN, Nefti-Meziani S, Atyabi A (2015) A comprehensive review of swarm optimization algorithms. PLoS ONE 10(5):36

    Google Scholar 

  34. El-Abd M (2012) Performance assessment of foraging algorithms vs. evolutionary algorithms. Inf Sci 182(1):243–263

    MathSciNet  Google Scholar 

  35. Beheshti Z, Shamsuddin SM, Hasan S (2015) Memetic binary particle swarm optimization for discrete optimization problems. Inf Sci 299:58–84

    Google Scholar 

  36. Cavalcante RC, Brasileiro RC, Souza VLP, Nobrega JP, Oliveira ALI (2016) Computational intelligence and financial markets: a survey and future directions. Expert Syst Appl 55:194–211

    Google Scholar 

  37. Chaurasia SN, Singh A (2015) A hybrid swarm intelligence approach to the registration area planning problem. Inf Sci 302:50–69

    Google Scholar 

  38. Zhang H, Cao X, Ho JK, Chow TW (2017) Object-level video advertising: an optimization framework. IEEE Trans Industr Inform 13(2):520–531

    Google Scholar 

  39. Cheng Weng F, Asmuni H, McCollum B, McMullan P, Omatu S (2014) A new hybrid imperialist swarm-based optimization algorithm for university timetabling problems. Inf Sci 283:1–21

    Google Scholar 

  40. Qin Q, Cheng S, Chu X, Lei X, Shi Y (2017) Solving non-convex/non-smooth economic load dispatch problems via an enhanced particle swarm optimization. Appl Soft Comput 59:229–242

    Google Scholar 

  41. Esmin AAA, Coelho RA, Matwin S (2015) A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data. Artif Intell Rev 44(1):23–45

    Google Scholar 

  42. Habbi H, Boudouaoui Y, Karaboga D, Ozturk C (2015) Self-generated fuzzy systems design using artificial bee colony optimization. Inf Sci 295:145–159

    MathSciNet  Google Scholar 

  43. Kiran MS, Hakli H, Gunduz M, Uguz H (2015) Artificial bee colony algorithm with variable search strategy for continuous optimization. Inf Sci 300:140–157

    MathSciNet  Google Scholar 

  44. Mahdavi S, Shiri ME, Rahnamayan S (2015) Metaheuristics in large-scale global continues optimization: a survey. Inf Sci 295:407–428

    MathSciNet  Google Scholar 

  45. Marie-Sainte SL (2015) A survey of particle swarm optimization techniques for solving university examination timetabling problem. Artif Intell Rev 44(4):537–546

    Google Scholar 

  46. Mei Kuan L, Chee Seng C, Monekosso D, Remagnino P (2014) Refined particle swarm intelligence method for abrupt motion tracking. Inf Sci 283:267–287

    Google Scholar 

  47. Nebti S, Boukerram A (2017) Swarm intelligence inspired classifiers for facial recognition. Swarm Evol Comput 32:150–166

    Google Scholar 

  48. Pacini E, Mateos C, Garino CG (2014) Distributed job scheduling based on swarm intelligence: a survey. Comput Electr Eng 40(1):252–269

    Google Scholar 

  49. Ran C, Yaochu J (2015) A social learning particle swarm optimization algorithm for scalable optimization. Inf Sci 291:43–60

    MathSciNet  MATH  Google Scholar 

  50. Saleem M, Di Caro GA, Farooq M (2011) Swarm intelligence based routing protocol for wireless sensor networks: survey and future directions. Inf Sci 181(20):4597–4624

    Google Scholar 

  51. Wang Z, Qin L, Yang W (2015) A self-organising cooperative hunting by robotic swarm based on particle swarm optimisation localisation. Int J Bioinspired Comput 7(1):68–73

    Google Scholar 

  52. Zebing W, Li Q, Wei Y (2015) A self-organising cooperative hunting by robotic swarm based on particle swarm optimisation localisation. Int J Bioinspired Comput 7(1):68–73

    Google Scholar 

  53. Zhang S, Lee CKM, Chan HK, Choy KL, Wu Z (2014) Swarm intelligence applied in green logistics: a literature review. Eng Appl Artif Intell 37:154–169

    Google Scholar 

  54. Zhao ZS, Feng X, Lin YY, Wei F, Wang SK, Xiao TL, Cao MY, Hou ZG (2015) Evolved neural network ensemble by multiple heterogeneous swarm intelligence. Neurocomputing 149:29–38

    Google Scholar 

  55. Couzin ID, Krause J, James R, Ruxton GD, Franks NR (2002) Collective memory and spatial sorting in animal groups. J Theor Biol 218(1):1–11

    MathSciNet  Google Scholar 

  56. Tang R, Fong S, Yang X-S, Deb S (2012) Wolf search algorithm with ephemeral memory. In: 7th international conference on digital information management, ICDIM 2012, pp 165–172

  57. Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In: Proceedings of IEEE congress on evolutionary computation, pp 1671–1676

  58. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. Springer, Berlin, pp 65–74

    MATH  Google Scholar 

  59. Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22(3):52–67

    MathSciNet  Google Scholar 

  60. Weiss G (2000) Multiagent systems: a modern approach to distributed artificial intelligence. MIT Press, Cambridge

    Google Scholar 

  61. Pehlivanoglu YV (2013) A new particle swarm optimization method enhanced with a periodic mutation strategy and neural networks. IEEE Trans Evol Comput 17(3):436–452

    Google Scholar 

  62. Hu M, Wu T, Weir JD (2012) An intelligent augmentation of particle swarm optimization with multiple adaptive methods. Inf Sci 213:68–83

    Google Scholar 

  63. Shi Y, Eberhart R (2008) Population diversity of particle swarms. In: 2008 IEEE congress on evolutionary computation, pp 1063–1067

  64. Sörensen K (2015) Metaheuristics—the metaphor exposed. Int Trans Oper Res 22(1):3–18

    MathSciNet  MATH  Google Scholar 

  65. Li X, Shao Z, Qian J (2002) An optimizing method based on autonomous animals: fish-swarm algorithm. Syst Eng Theory Pract 22(11):32–38

    Google Scholar 

  66. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Erciyes University, Kayseri

    Google Scholar 

  67. Teodorović D, Dell’Orco M (2005) Bee colony optimization—a cooperative learning approach to complex transportation problems. Adv OR AI Methods Transp 51:60

    Google Scholar 

  68. Krishnanand KN, Ghose D (2005) Detection of multiple source locations using a glowworm metaphor with applications to collective robotics. In: 2005 IEEE swarm intelligence symposium, pp 84–91

  69. Chu S-C, P-w Tsai, Pan J-S (2006) Cat swarm optimization. Springer, Berlin, pp 854–858

    Google Scholar 

  70. Havens TC, Spain CJ, Salmon NG, Keller JM (2008) Roach infestation optimization. In: 2008 IEEE swarm intelligence symposium, pp 1–7

  71. Monismith DR, Mayfield BE (2008) Slime mold as a model for numerical optimization. In: 2008 IEEE swarm intelligence symposium, pp 1–8

  72. Yang X-S, Deb S (2009) Cuckoo search via levy flights. In: 2009 world congress on nature & biologically inspired computing, pp 210–214

  73. He S, Wu QH, Saunders JR (2009) Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans Evol Comput 13(5):973–990

    Google Scholar 

  74. Yang XS (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bioinspir Comut 2(2):78–84

    Google Scholar 

  75. Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. Springer, Berlin, pp 355–364

    Google Scholar 

  76. Iordache S (2010) Consultant-guided search: a new metaheuristic for combinatorial optimization problems. In: GECCO’10 proceedings of the 12th annual conference on genetic and evolutionary computation, pp 225–232

  77. Shi Y (2011) Brain storm optimization algorithm. Springer, Berlin, pp 303–309

    Google Scholar 

  78. Pan WT (2012) A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl Based Syst 26:69–74

    Google Scholar 

  79. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845

    MathSciNet  MATH  Google Scholar 

  80. Cuevas E, Cienfuegos M, Zaldivar D, Perez-Cisneros M (2013) A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst Appl 40(16):6374–6384

    Google Scholar 

  81. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Google Scholar 

  82. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium of micro machine and human science, pp 39–43

  83. Bratton D, Kennedy J (2007) Defining a standard for particle swarm optimization. In: 2007 IEEE swarm intelligence symposium, pp 120–127

  84. Zhang YD, Wang SH, Ji GL (2015) A comprehensive survey on particle swarm optimization algorithm and its applications. Math Probl Eng 2015:1–38

    MathSciNet  MATH  Google Scholar 

  85. Zhao WG, Wang LY (2016) An effective bacterial foraging optimizer for global optimization. Inf Sci 329:719–735

    Google Scholar 

  86. Niu B, Fan Y, Tan LJ, Rao JJ, Li L (2010) A review of bacterial foraging optimization part I: background and development. Adv Intell Comput Theor Appl 93:535–543

    MATH  Google Scholar 

  87. Li XT, Yin MH (2015) Modified cuckoo search algorithm with self adaptive parameter method. Inf Sci 298:80–97

    Google Scholar 

  88. Saji Y, Riffi ME (2016) A novel discrete bat algorithm for solving the travelling salesman problem. Neural Comput Appl 27(7):1853–1866

    Google Scholar 

  89. Wang B, Li DX, Jiang JP, Liao YH (2016) A modified firefly algorithm based on light intensity difference. J Comb Optim 31(3):1045–1060

    MathSciNet  MATH  Google Scholar 

  90. Imran AM, Kowsalya M (2014) A new power system reconfiguration scheme for power loss minimization and voltage profile enhancement using fireworks algorithm. Int J Electr Power Energy Syst 62:312–322

    Google Scholar 

  91. Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. In: Advances in swarm intelligence, pp 355–364

    Google Scholar 

  92. Fong S, Deb S, Hanne T, Li JY (2016) Eidetic wolf search algorithm with a global memory structure. Eur J Oper Res 254(1):19–28

    MathSciNet  MATH  Google Scholar 

  93. Zhu AJ, Xu CP, Li Z, Wu J, Liu ZB (2015) Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC. J Syst Eng Electron 26(2):317–328

    Google Scholar 

  94. Chu X, Hu M, Wu T, Weir JD, Lu Q (2014) Ahps2: an optimizer using adaptive heterogeneous particle swarms. Inf Sci 280:26–52

    Google Scholar 

  95. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295

    Google Scholar 

  96. JCGM (2008) International vocabulary of metrology—basic and general concepts and associated terms (VIM)

  97. Garcia S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J Heuristics 15(6):617–644

    MATH  Google Scholar 

  98. Akay B, Karaboga D (2009) Parameter tuning for the artificial bee colony algorithm, pp 608–619

    Google Scholar 

  99. Shi Y, Eberhart RC (1999) Empirical study of particle swarm optimization. In: Proceedings of IEEE congress on evolutionary computation, pp 1945–1950

  100. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18

    Google Scholar 

  101. Shi Y, Eberhart R (2008) Population diversity of particle swarms. In: 2008 IEEE congress on evolutionary computation, Hong Kong, China, pp 1063–1067

  102. Moloi NP, Ali MM (2005) An iterative global optimization algorithm for potential energy minimization. Comput Optim Appl 30(2):119–132

    MathSciNet  MATH  Google Scholar 

  103. Das S, Suganthan PN (2011) Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems. Technical report, Jadavpur University, India and Nanyang Technological University, Singapore

  104. Mladenović N, Petrović J, Kovačević-Vujčić V, Čangalović M (2003) Solving spread spectrum radar polyphase code design problem by tabu search and variable neighbourhood search. Eur J Oper Res 151(2):389–399

    MathSciNet  MATH  Google Scholar 

  105. Yang XS, Cui ZH (2014) Bio-inspired computation: success and challenges of IJBIC. Int J Bioinspired Comput 3(2):77–84

    Google Scholar 

  106. van den Bergh F, Engelbrecht AP (2006) A study of particle swarm optimization particle trajectories. Inf Sci 176(8):937–971

    MathSciNet  MATH  Google Scholar 

  107. Chen WN, Zhang J, Chung HSH, Zhong WL, Wu WG, Shi YH (2010) A novel set-based particle swarm optimization method for discrete optimization problems. IEEE Trans Evol Comput 14(2):278–300

    Google Scholar 

  108. Chu X, Niu B, Liang JJ, Lu Q (2016) An orthogonal-design hybrid particle swarm optimiser with application to capacitated facility location problem. Int J Bioinspired Comput 8(5):268–285

    Google Scholar 

  109. Chu X, Chen J, Cai F, Li L, Qin Q (2018) Adaptive brainstorm optimisation with multiple strategies. Memet Comput. https://doi.org/10.1007/s12293-018-0253-x

    Article  Google Scholar 

  110. Akay B, Karaboga D (2012) Artificial bee colony algorithm for large-scale problems and engineering design optimization. J Intell Manuf 23(4):1001–1014

    Google Scholar 

  111. Hossain MA, Ferdous I (2015) Autonomous robot path planning in dynamic environment using a new optimization technique inspired by bacterial foraging technique. Rob Auton Syst 64:137–141

    Google Scholar 

  112. Chu X, Xu S, Cai F, Chen J, Qin Q (2018) An efficient auction mechanism for regional logistics synchronization. J Intell Manuf. https://doi.org/10.1007/s10845-018-1410-2

    Article  Google Scholar 

  113. Li JQ, Pan QK (2015) Solving the large-scale hybrid flow shop scheduling problem with limited buffers by a hybrid artificial bee colony algorithm. Inf Sci 316:487–502

    Google Scholar 

  114. Li XD, Yao X (2012) Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans Evol Comput 16(2):210–224

    Google Scholar 

  115. Nickabadi A, Ebadzadeh MM, Safabakhsh R (2012) A competitive clustering particle swarm optimizer for dynamic optimization problems. Swarm Intell 6(3):177–206

    Google Scholar 

  116. Yazdani D, Nasiri B, Sepas-Moghaddam A, Meybodi MR (2013) A novel multi-swarm algorithm for optimization in dynamic environments based on particle swarm optimization. Appl Soft Comput 13(4):2144–2158

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Major Project for National Natural Science Foundation of China (Grant No. 71790615, the design for Decision-making System of National Security Management), the Key Project of National Nature Science Foundation of China (Grant No. 71431006, Decision Support Theory and Platform of the Embedded Service for Environmental Management), the National Natural Science Foundation of China (Grant No. 71501132, 71701079, 71571120, 71371127 and 61273367), the Natural Science Foundation of Guangdong Province (2016A030310067), and the 2016 Tencent “Rhinoceros Birds”—Scientific Research Foundation for Young Teachers of Shenzhen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1374 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, X., Wu, T., Weir, J.D. et al. Learning–interaction–diversification framework for swarm intelligence optimizers: a unified perspective. Neural Comput & Applic 32, 1789–1809 (2020). https://doi.org/10.1007/s00521-018-3657-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3657-0

Keywords

Navigation