Skip to main content
Log in

State estimation of zinc air batteries using neural networks

  • S.I. : IWANN2017: Learning algorithms with real world applications
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The main task of battery management systems is to keep the working area of the battery in a safe state. Estimation of the state of charge and the state of health is therefore essential. The traditional way uses the voltage level of a battery to determine those values. Modern metal air batteries provide a flat voltage characteristic which necessitates new approaches. One promising technique is the electrochemical impedance spectroscopy, which measures the AC resistance for a set of different frequencies. Previous approaches match the measured impedances with a nonlinear equivalent circuit, which needs a lot of time to solve a nonlinear least-squares problem. This paper combines the electrochemical impedance spectroscopy with neural networks to speed up the state estimation using the example of zinc air batteries. Moreover, these networks are trained with different subsets of the spectra as input data in order to determine the required number of frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Pei P, Wang K, Ma Z (2014) Technologies for extending zinc-air battery’s cyclelife: a review. Appl Energy 128:315–324

    Article  Google Scholar 

  2. Energyzer: Zinc-Air application manual. data.energyzer.com. 12 Feb 2017

  3. Greenwood NN, Earnshaw A (1988) Chemie der Elemente. 1. Auflage, S. 1545

  4. Linden D, Reddy TB (2002) Handbook of batteries, McGraw-Hill, 3rd edn, chapter 13, p 38

  5. Electropaedia, battery and energy technologies: battery management systems (BMS). www.mpoweruk.com/bms.htm. 19 Dec 2017

  6. Murnane M, Ghazel A (2017) A closer look at state of charge (SOC) and state of health (SOH) estimation techniques for batteries. www.analog.com. 19 Dec 2017

  7. Datasheet of lithium ion battery Panasonic NCR18650B. https://na.industrial.panasonic.com. 19 Dec 2017

  8. Nernst W (1889) Die elektromotorische Wirksamkeit der Jonen. Zeitschrift für Physikalische Chemie, IV. Band, 6. Heft

  9. Dominguez D (2013) NASA Glenn safety manual chapter 6—hydrogen. www.nfpa.org. 02 Feb 2013

  10. Dambrowski J (2013) Review on methods of state-of-charge estimation with viewpoint to the modern \(LiFePO_4\)/\(Li_4Ti_5O_{12}\) lithium–ion systems. In: International telecommunication energy conference. 35, Hamburg

  11. Geladi P, Kowalski BR (1986) Partial least-squares regression: a tutorial. Anal Chem Acta 185:1–17

    Article  Google Scholar 

  12. Komijani H, Rezaeihassanabadi S, Parsaei MR, Maleki S (2017) Radial basis function neural network for electrochemical impedance prediction at presence of corrosion inhibitor. Period Polytech Chem Eng 61:128–132

    Google Scholar 

  13. Conesa C, Civera JI, Seguí L, Fito P, Laguarda-Miró N (2016) An electrochemical impedance spectroscopy system for monitoring pineapple waste saccharification. Sensors 16(2):188

    Article  Google Scholar 

  14. Arai H, Müller S (2000) AC impedance analysis of bifunctional air electrodes for metal-air-batteries. J Electrochem Soc 147:3584–3591

    Article  Google Scholar 

  15. Drossbach P, Schulz J (1964) Elektrochemische Untersuchungen an Kohleelektroden—Die Überspannung des Wasserstoffs. Electrochim Acta 9:1391–1404

    Article  Google Scholar 

  16. Kiel M (2013) Impedanzspektroskopie an Batterien unter besonderer Berücksichtigung von Batteriesensoren für den Feldeinsatz. Aachener Beiträge des ISEA. 67, Shaker Verlag

  17. MacKay DJC (1992) A practical Bayesian framework for backpropagation networks. Neural Comput 4(3):448–472

    Article  Google Scholar 

  18. Doan CD, Liong S-Y (2004) Generalization for multilayer neural network Bayesian regularization or early stopping. In: Proceedings of the 2nd conference Asia Pacific Association of hydrology and water resources

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Loechte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loechte, A., Gebert, O., Heming, D. et al. State estimation of zinc air batteries using neural networks. Neural Comput & Applic 32, 369–377 (2020). https://doi.org/10.1007/s00521-018-3705-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3705-9

Keywords

Navigation