Skip to main content

Advertisement

Log in

A deep convolutional neural network model for automated identification of abnormal EEG signals

  • Recent Advances in Deep Learning for Medical Image Processing
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Electroencephalogram (EEG) is widely used to monitor the brain activities. The manual examination of these signals by experts is strenuous and time consuming. Hence, machine learning techniques can be used to improve the accuracy of detection. Nowadays, deep learning methodologies have been used in medical field to diagnose the health conditions precisely and aid the clinicians. In this study, a new deep one-dimensional convolutional neural network (1D CNN) model is proposed for the automatic recognition of normal and abnormal EEG signals. The proposed model is a complete end-to-end structure which classifies the EEG signals without requiring any feature extraction. In this study, we have used the EEG signals from temporal to occipital (T5–O1) single channel obtained from Temple University Hospital EEG Abnormal Corpus (v2.0.0) EEG dataset to develop the 1D CNN model. Our developed model has yielded the classification error rate of 20.66% in classifying the normal and abnormal EEG signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Smith SJM (2005) EEG in the diagnosisclassification, and management of patients with epilepsy. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp.2005.069245

    Article  Google Scholar 

  2. Acharya UR, Vinitha Sree S, Swapna G et al (2013) Automated EEG analysis of epilepsy: a review. Knowl Based Syst 45:147–165

    Article  Google Scholar 

  3. Işik H, Sezer E (2012) Diagnosis of epilepsy from electroencephalography signals using multilayer perceptron and Elman artificial neural networks and wavelet transform. J Med Syst 36:1–13

    Article  Google Scholar 

  4. Acharya UR, Oh SL, Hagiwara Y et al (2018) Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput Biol Med 100:270–278

    Article  Google Scholar 

  5. Chen G (2014) Automatic EEG seizure detection using dual-tree complex wavelet-Fourier features. Expert Syst Appl 41(5):2391–2394

    Article  Google Scholar 

  6. Lehmann C, Koenig T, Jelic V et al (2007) Application and comparison of classification algorithms for recognition of Alzheimer’s disease in electrical brain activity (EEG). J Neurosci Methods 161(2):342–350

    Article  Google Scholar 

  7. Ahmadlou M, Adeli H, Adeli A (2011) Fractality and a wavelet-chaos-methodology for EEG-based diagnosis of alzheimer disease. Alzheimer Dis Assoc Disord 25(1):85–92

    Article  Google Scholar 

  8. Kulkarni N, Bairagi V (2018) EEG-based diagnosis of alzheimer disease: a review and novel approaches for feature extraction and classification techniques. Academic Press, Cambridge

    Google Scholar 

  9. Oh SL, Hagiwara Y, Raghavendra U et al (2018) A deep learning approach for Parkinson’s disease diagnosis from EEG signals. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3689-5

    Article  Google Scholar 

  10. Acharya UR, Oh SL, Hagiwara Y et al (2018) Automated EEG-based screening of depression using deep convolutional neural network. Comput Methods Programs Biomed 161:103–113

    Article  Google Scholar 

  11. Acharya UR, Bhat S, Faust O et al (2015) Nonlinear dynamics measures for automated EEG-based sleep stage detection. Eur Neurol 74(5–6):268–287

    Article  Google Scholar 

  12. Jasper HH, Proctor LD, Knighton RS, Noshay WC, Costello RT (1958) Reticular formation of the brain. Little, Brown & Company, Boston

    Google Scholar 

  13. Chatrian GE, Lettich E, Nelson PL (1985) Ten percent electrode system for topographic studies of spontaneous and evoked EEG activity. Am J EEG Technol. https://doi.org/10.1080/00029238.1985.11080163

    Article  Google Scholar 

  14. Medithe JWC, Nelakuditi UR (2016) Study of normal and abnormal EEG. In: 2016 3rd International conference on advanced computing and communication systems (ICACCS), vol 1. IEEE, pp. 1–4

  15. Phillips N (2016) Epilepsy with generalized seizures: symptoms, causes, and treatments. Available: https://www.healthline.com/health/generalized-seizures

  16. Acharya UR, Hagiwara Y, Deshpande SN, Suren S, Koh JEW, Oh SL, Arunkumar N, Ciaccio EJ, Lim CM (2018) Characterization of focal EEG signals: a review. Future Gener Comput Syst. https://doi.org/10.1016/j.future.2018.08.044

    Article  Google Scholar 

  17. Boggs JG (2009) Generalized EEG waveform abnormalities. Retrieved April 25, 2010, from http://emedicine.medscape.com/article/1140075-overview

  18. Bhattacharyya A, Pachori RB (2017) A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform. IEEE Trans Biomed Eng 64(9):2003–2015

    Article  Google Scholar 

  19. Hassan AR, Subasi A (2016) Automatic identification of epileptic seizures from EEG signals using linear programming boosting. Comput Methods Programs Biomed. https://doi.org/10.1016/j.cmpb.2016.08.013

    Article  Google Scholar 

  20. Zandi AS, Tafreshi R, Javidan M, Dumont GA (2013) Predicting epileptic seizures in scalp EEG based on a variational bayesian gaussian mixture model of zero-crossing intervals. IEEE Trans Biomed Eng 60(5):1401–1413

    Article  Google Scholar 

  21. Aarabi A, He B (2017) Seizure prediction in patients with focal hippocampal epilepsy. Clin Neurophysiol 128(7):1299–1307

    Article  Google Scholar 

  22. Truong ND, Nguyen AD, Kuhlmann L et al (2018) Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram. Neural Netw 105:104–111

    Article  Google Scholar 

  23. Alotaiby TN, Alshebeili SA, Alotaibi FM, Alrshoud SR (2017) Epileptic seizure prediction using CSP and LDA for scalp EEG signals. Comput Intell Neurosci. https://doi.org/10.1155/2017/1240323

    Article  Google Scholar 

  24. Parvez MZ, Paul M (2017) Seizure prediction using undulated global and local features. IEEE Trans Biomed Eng 64(1):208–217

    Article  Google Scholar 

  25. Faust O, Hagiwara Y, Hong TJ et al (2018) Deep learning for healthcare applications based on physiological signals: a review. Comput Methods Programs Biomed. https://doi.org/10.1016/j.cmpb.2018.04.005

    Article  Google Scholar 

  26. Acharya UR, Hagiwara Y, Adeli H (2018) Automated seizure prediction. Epilepsy Behav 88:251–261

    Article  Google Scholar 

  27. Acharya UR, Sree SV, Alvin AP et al (2012) Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals. Int J Neural Syst 22(02):1250002

    Article  Google Scholar 

  28. Tzimourta KD, Tzallas AT, Giannakeas N, et al (2018) Epileptic seizures classification based on long-term EEG signal wavelet analysis. In: IFMBE proceedings

  29. Adeli H, Zhou Z, Dadmehr N (2003) Analysis of EEG records in an epileptic patient using wavelet transform. J Neurosci Methods. https://doi.org/10.1016/s0165-0270(02)00340-0

    Article  Google Scholar 

  30. Yuan Q, Zhou W, Xu F et al (2018) Epileptic EEG identification via LBP operators on wavelet coefficients. Int J Neural Syst. https://doi.org/10.1142/s0129065718500107

    Article  Google Scholar 

  31. Oweis RJ, Abdulhay EW (2011) Seizure classification in EEG signals utilizing Hilbert–Huang transform. Biomed Eng Online 10(1):38. https://doi.org/10.1186/1475-925X-10-38

    Article  Google Scholar 

  32. Acharya UR, Sree SV, Suri JS (2011) Automatic detection of epileptic eeg signals using higher order cumulant features. Int J Neural Syst 21(5):403–414

    Article  Google Scholar 

  33. Acharya UR, Yanti R, Zheng JW et al (2013) Automated diagnosis of epilepsy using cwt, hos and texture parameters. Int J Neural Syst 23(03):1350009

    Article  Google Scholar 

  34. Acharya UR, Vinitha Sree S, Alvin APC, Suri JS (2012) Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework. Expert Syst Appl 10:9072–9078

    Article  Google Scholar 

  35. George ST, Balakrishnan R, Johnson JS, Jayakumar J (2017) Application and evaluation of independent component analysis methods to generalized seizure disorder activities exhibited in the brain. Clin EEG Neurosci. https://doi.org/10.1177/1550059416677915

    Article  Google Scholar 

  36. Subasi A, Gursoy MI (2010) EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst Appl 37(12):8659–8666

    Article  Google Scholar 

  37. Alotaiby TN, Alshebeili SA, Alshawi T et al (2014) EEG seizure detection and prediction algorithms: a survey. EURASIP J Adv Signal Process 2014(1):183

    Article  Google Scholar 

  38. Najafabadi MM, Villanustre F, Khoshgoftaar TM et al (2015) Deep learning applications and challenges in big data analytics. J Big Data 2(1):1

    Article  Google Scholar 

  39. Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444

    Article  Google Scholar 

  40. Coşkun M, Yildirim Ö, Uçar A, Demir Y (2017) An overview of popular deep learning methods. Eur J Tech 7(2):165–176

    Article  Google Scholar 

  41. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst. https://doi.org/10.1016/j.protcy.2014.09.007

    Article  Google Scholar 

  42. LeCun Y, Boser B, Denker JS et al (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput. https://doi.org/10.1162/neco.1989.1.4.541

    Article  Google Scholar 

  43. Uçar A, Demir Y, Güzeliş C (2017) Object recognition and detection with deep learning for autonomous driving applications. Simulation 93(9):759–769

    Article  Google Scholar 

  44. Beşer F, Kizrak MA, Bolat B, Yildirim T (2018) Recognition of sign language using capsule networks. In: 2018 26th IEEE signal processing and communications applications conference (SIU)

  45. Sarikaya R, Hinton GE, Deoras A (2014) Application of deep belief networks for natural language understanding. IEEE/ACM Trans Audio Speech Lang Process. https://doi.org/10.1109/taslp.2014.2303296

    Article  Google Scholar 

  46. Abdel-hamid O, Deng L, Yu D (2013) Exploring convolutional neural network structures and optimization techniques for speech recognition. In: 14th Annual conference of the international speech communication association (INTERSPEECH 2013), pp 3366–3370

  47. Mnih V, Kavukcuoglu K, Silver D et al (2015) Playing atari with deep reinforcement learning Volodymyr. Nature. https://doi.org/10.1038/nature14236

    Article  Google Scholar 

  48. Yildirim O, Tan RS, Acharya UR (2018) An efficient compression of ECG signals using deep convolutional autoencoders. Cogn Syst Res. https://doi.org/10.1016/j.cogsys.2018.07.004

    Article  Google Scholar 

  49. Yildirim Ö (2018) A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification. Comput Biol Med 96:189–202

    Article  Google Scholar 

  50. Acharya UR, Oh SL, Hagiwara Y et al (2017) A deep convolutional neural network model to classify heartbeats. Comput Biol Med. https://doi.org/10.1016/j.compbiomed.2017.08.022

    Article  Google Scholar 

  51. Yıldırım Ö, Pławiak P, Tan RS, Acharya UR (2018) Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Comput Biol Med. https://doi.org/10.1016/j.compbiomed.2018.09.009

    Article  Google Scholar 

  52. Obeid I, Picone J (2016) The temple university hospital EEG data corpus. Front Neurosci. https://doi.org/10.3389/fnins.2016.00196

    Article  Google Scholar 

  53. Srivastava N, Hinton G, Krizhevsky A et al (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. https://doi.org/10.1214/12-aos1000

    Article  MathSciNet  MATH  Google Scholar 

  54. Lopez S, Suarez G, Jungreis D et al (2016) Automated identification of abnormal adult EEGs. In: 2015 IEEE signal processing in medicine and biology symposium—proceedings

  55. American Clinical Neurophysiology Society (2006) Guideline 6: a proposal for standard montages to be used in clinical EEG. J Clin Neurophysiol 23(2):111

    Article  Google Scholar 

  56. Chollet F (2015) Keras: Deep learning library for theano and tensorflow. https://keras.io/, 7(8)

  57. Lopez S (2017) Automated identification of abnormal EEGs. MS thesis, Temple University. Available: http://www.isip.piconepress.com/publications/ms_theses/2017/abnormal

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özal Yıldırım.

Ethics declarations

Conflict of interest

There is no conflict of interest in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yıldırım, Ö., Baloglu, U.B. & Acharya, U.R. A deep convolutional neural network model for automated identification of abnormal EEG signals. Neural Comput & Applic 32, 15857–15868 (2020). https://doi.org/10.1007/s00521-018-3889-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3889-z

Keywords

Navigation