Abstract
The principal component analysis method and GRNN neural network are used to construct the gesture recognition system, so as to reduce the redundant information of EMG signals, reduce the signal dimension, improve the recognition efficiency and accuracy, and enhance the feasibility of real-time recognition. Using the means of extracting key information of human motion, the specific action mode is identified. In this paper, nine static gestures are taken as samples, and the surface EMG signal of the arm is collected by the electromyography instrument to extract four kinds of characteristics of the signal. After dimension reduction and neural network learning, the overall recognition rate of the system reached 95.1%, and the average recognition time was 0.19 s.











Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ison M, Vujaklija I, Whitsell B et al (2016) High-density electromyography and motor skill learning for robust long-term control of a 7-DoF robot arm. IEEE Trans Neural Syst Rehabil Eng 24(4):424–433
Fang Y, Zhou D, Li K et al (2017) Interface prostheses with classifier-feedback-based user training. IEEE Trans Biomed Eng 64(11):2575–2583
Ding W, Li G, Sun Y et al (2017) D–S evidential theory on sEMG signal recognition. Int J Comput Sci Math 8(2):138–145
Falisse A, Van Rossom S, Jonkers I et al (2017) EMG-Driven Optimal Estimation of Subject-SPECIFIC Hill Model Muscle-Tendon Parameters of the Knee Joint Actuators. IEEE Transactions on Biomedical Engineering 64(9):2253–2262
Li Z, Li G, Sun Y et al (2017) Development of articulated robot trajectory planning. Int J Comput Sci Math 8(1):52–60
Farina D, Jiang N, Rehbaum H et al (2014) The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges. IEEE Trans Neural Syst Rehabil Eng 22(4):797–809
Chen D, Li G, Sun Y et al (2017) Fusion hand gesture segmentation and extraction based on CMOS sensor and 3D sensor. Int J Wirel Mob Comput 12(3):305–312
Miao W, Li G, Sun Y et al (2016) Gesture recognition based on sparse representation. Int J Wirel Mob Comput 11(4):348–356
Ding W, Li G, Jiang G et al (2015) Intelligent computation in grasping control of dexterous robot hand. J Comput Theor Nanosci 12(12):6096–6099
Tyagi P, Arora A, Rastogi V (2017) Stress analysis of lower back using EMG signal. Biomed Res 28(2):519–524
Jiang D, Zheng Z, Li G et al (2018) Gesture recognition based on binocular vision. Cluster Comput. https://doi.org/10.1007/s10586-018-1844-5
Shih JJ, Krusienski DJ, Wolpaw JR (2012) Brain-computer interfaces in medicine. Mayo Clin Proc 87(3):268–279
Chang W, Li G, Kong J et al (2018) Thermal mechanical stress analysis of ladle lining with integral brick joint. Arch Metall Mater 63(2):659–666
Farina D, Holobar A, Merletti R et al (2010) Decoding the neural drive to muscles from the surface electromyogram. Clin Neurophysiol 121(10):1616–1623
Chen D, Li G, Sun Y et al (2017) An interactive image segmentation method in hand gesture recognition. Sensors 17(2):253
Sun Y, Li C, Li G et al (2018) Gesture recognition based on kinect and sEMG signal fusion. Mob Netw Appl 23(4):797–805
Scheme E, Englehart K (2011) Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. J Rehabil Res Dev 48(6):643–659
Li G, Zhang L, Sun Y et al (2018) Towards the sEMG hand: internet of things sensors and haptic feedback application. Multimed Tools Appl. https://doi.org/10.1007/s11042-018-6293-x
Sensinger JW, Lock BA, Kuiken TA (2009) Adaptive pattern recognition of myoelectric signals: exploration of conceptual framework and practical algorithms. IEEE Trans Neural Syst Rehabil Eng 17(3):270–278
Sun Y, Hu J, Li G et al (2018) Gear reducer optimal design based on computer multimedia simulation. J Supercomput. https://doi.org/10.1007/s11227-018-2255-3
Elamvazuthi I, Duy NHX, Ali Z et al (2015) Electromyography (EMG) based classification of neuromuscular disorders using multi-layer perceptron. Procedia Comput Sci 76:223–228
Li G, Tang H, Sun Y et al (2017) Hand gesture recognition based on convolution neural network. Clust Comput. https://doi.org/10.1007/s10586-017-1435-x
He Y, Li G, Liao Y et al (2017) Gesture recognition based on an improved local sparse representation classification algorithm. Cluster Comput. https://doi.org/10.1007/s10586-017-1237-1
He Y, Li G, Sun Y et al (2018) Temperature intelligent prediction model of coke oven flue based on CBR and RBFNN. International Journal of Computing Science and Mathematics 9(4):327–339
Li B, Sun Y, Li G et al (2017) Gesture recognition based on modified adaptive orthogonal matching pursuit algorithm. Cluster Comput. https://doi.org/10.1007/s10586-017-1231-7
Xiong C, Chen W, Sun B et al (2016) Design and implementation of an anthropomorphic hand for replicating human grasping functions. IEEE Trans Rob 32(3):652–671
Li G, Liu J, Jiang G et al (2015) Numerical simulation of temperature field and thermal stress field in the new type of ladle with the nanometer adiabatic material. Adv Mech Eng 7(4):1687814015575988
Fang Y (2015) Interacting with prosthetic hands via electromyography signals. School of Computing University of Portsmouth
Jiang D, Li G, Ying Sun et al (2018) Gesture recognition based on skeletonization algorithm and CNN with ASL database. Multimed Tools Appl. https://doi.org/10.1007/s11042-018-6748-0
Cheng W, Sun Y, Li G et al (2018) Jointly network: a network based on CNN and RBM for gesture recognition. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3775-8
Huang Z, Shan G, Chen J, Sun J (2018) TRec: an efficient recommendation system for hunting passengers with deep neural networks. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3728-2
Fang Y, Liu H, Li G et al (2015) A multichannel surface EMG system for hand motion recognition. Int J Humanoid Robot. https://doi.org/10.1142/S0219843615500115
Wu B, Yan X, Wang Y, Soares C (2017) An Evidential Reasoning-Based CREAM to Human Reliability Analysis in Maritime Accident Process. Risk Analysis 37(10):1936–1957
Chen D, Li G, Kong J et al (2017) Hand gesture recognition using interactive image segmentation method. In: International conference on intelligent robotics and applications. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65289-4_51
Li G, Liu Z, Jiang G et al (2015) Numerical simulation of the influence factors for rotary kiln in temperature field and stress field and the structure optimization. Advances in Mechanical Engineering 7(6):1687814015589667
Liao Y, Sun Y, Li G et al (2017) Simultaneous calibration: a joint optimization approach for multiple kinect and external cameras. Sensors 17(7):1491
He Y, Li G, Zhao Y et al (2018) Numerical simulation-based optimization of contact stress distribution and lubrication conditions in the straight worm drive. Strength Mater 50(1):157–165
Tan C, Sun Y, Li G et al (2019) Research on Gesture Recognition of Smart Data Fusion Features in the IoT. Neural Comput Appl. https://doi.org/10.1007/s00521-019-04023-0
Li G, Miao W, Jiang G et al (2015) Intelligent control model and its simulation of flue temperature in coke oven. Discrete Contin Dyn Syst Ser S 8(6):1223–1237
Miao W, Li G, Jiang G et al (2015) Optimal grasp planning of multi-fingered robotic hands: a review. Appl Comput Math 14(3):238–247
Saeys Y, Inza I, Larrañaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23(19):2507–2517
Li G, Qu P, Kong J et al (2013) Influence of working lining parameters on temperature and stress field of ladle. Appl Math Inf Sci 7(2):439–448
Chen D, Li G, Jiang G et al (2015) Intelligent computational control of multi-fingered dexterous robotic hand. J Comput Theor Nanosci 12(12):6126–6132
Mehmood T, Liland KH, Snipen L et al (2012) A review of variable selection methods in partial least squares regression. Chemometr Intell Lab Syst 118(16):62–69
Li G, Qu P, Kong J et al (2013) Coke oven intelligent integrated control system. Appl Math Inf Sci 7(3):1043–1050
Yin Q, Li G, Zhu J (2017) Research on the method of step feature extraction for EOD robot based on 2D laser radar. Discrete Contin Dyn Syst Ser S (DCDS-S) 8(6):1415–1421
Li G, Jiang D, Zhou Y et al (2019) Human Lesion Detection Method Based on Image Information and Brain Signal. IEEE Access 7:11533–11542
Du F, Sun Y, Li G et al (2017) Adaptive fuzzy sliding mode control algorithm simulation for 2-DOF articulated robot. Int J Wirel Mob Comput 13(4):306–313
Li G, Wu H, Jiang G et al (2019) Dynamic Gesture Recognition in the Internet of Things. IEEE Access 7(1):23713–23724
Luo B, Sun Y, Li G et al (2019) Decomposition algorithm for depth image of human health posture based on brain health. Neural Comput Appl. https://doi.org/10.1007/s00521-019-04141-9
Andersen CM, Bro R (2010) Variable selection in regression—a tutorial. J Chemom 24(11–12):728–737
Li G, Gu Y, Kong J et al (2013) Intelligent control of air compressor production process. Appl Math Inf Sci 7(3):1051–1058
Li G, Kong J, Jiang G et al (2012) Air-fuel ratio intelligent control in coke oven combustion process. Inf Int Interdiscip J 15(11):4487–4494
Zhang L, Zheng Z, Li G et al (2018) Tactile sensing and feedback in SEMG hand. Int J Comput Sci Math 9(4):365–376
Acknowledgements
This work was supported by Grants of National Natural Science Foundation of China (Grant Nos. 51575407, 51505349, 51575338, 51575412 and 61733011) and the Grants of National Defense Pre-research Foundation of Wuhan University of Science and Technology (GF201705).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Qi, J., Jiang, G., Li, G. et al. Surface EMG hand gesture recognition system based on PCA and GRNN. Neural Comput & Applic 32, 6343–6351 (2020). https://doi.org/10.1007/s00521-019-04142-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-019-04142-8