Abstract
Parameter settings for nature-inspired optimization algorithms are essential for their effective performance. Evolutionary algorithms and swarm intelligence algorithms are prominent types of nature-inspired optimization. There are comprehensive reviews of parameter setting techniques for evolutionary algorithms. Counterparts providing an overview of parameter setting techniques for swarm intelligence algorithms are needed also. Therefore, in this paper, we provide a critical and comprehensive review, focusing in particular on dynamic parameter setting techniques. The paper describes a variety of swarm intelligence algorithms and parameter setting approaches that have been applied to them. This review simplifies the selection of parameter setting techniques for each algorithm by collecting them in a single document and classifying them under a taxonomy. Recommendations for parameter setting approach selection are provided in this review. We explore the open problems related to dynamic parameter setting techniques for swarm intelligence optimization and discuss the trade-off between run-time computation and flexibility of these algorithms.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abdullah S, Alzaqebah M (2013) A hybrid self-adaptive bees algorithm for examination timetabling problems. Appl Soft Comput 13(8):3608–3620
Angeline PJ (1998) Using selection to improve particle swarm optimization. In: Proceedings of IEEE international conference on evolutionary computation, Citeseer, pp 84–89
Bansal JC, Sharma H, Jadon SS, Clerc M (2014) Spider monkey optimization algorithm for numerical optimization. Memet Comput 6(1):31–47
Bartz-Beielstein T, Parsopoulos KE, Vrahatis MN (2004) Analysis of particle swarm optimization using computational statistics. In: Proceedings of the international conference of numerical analysis and applied mathematics (ICNAAM 2004), pp 34–37
Beielstein T, Parsopoulos KE, Vrahatis MN (2002) Tuning pso parameters through sensitivity analysis. Universität Dortmund, Tech. rep
Birattari M, Stützle T, Paquete L, Varrentrapp K (2002) A racing algorithm for configuring metaheuristics. In: Proceedings of the 4th annual conference on genetic and evolutionary computation, Morgan Kaufmann Publishers Inc., pp 11–18
Biswas A, Dasgupta S, Das S, Abraham A (2007) Synergy of PSO and bacterial foraging optimization a comparative study on numerical benchmarks. Innovations in hybrid intelligent systems. Springer, Berlin, pp 255–263
Blackwell T (2007) Particle swarm optimization in dynamic environments. Evolutionary computation in dynamic and uncertain environments. Springer, Berlin, pp 29–49
Blackwell T, Branke J (2004) Multi-swarm optimization in dynamic environments. In: Raidl GR et al (eds) Applications of evolutionary computing, vol 3005. EvoW6orkshops. Springer, Berlin, pp 489–500
Blackwell T, Branke J, Li X (2008) Particle swarms for dynamic optimization problems. Swarm intelligence. Springer, Berlin, pp 193–217
Blackwell TM, Bentley PJ et al (2002) Dynamic search with charged swarms. In: GECCO, Citeseer, vol 2, pp 19–26
Box GEP, Hunter JS, Hunter WG (2005) Statistics for experimenters: design, innovation, and discovery, 2nd edn. Wiley, New York
Cáceres LP, López-Ibáñez M, Stützle T (2015) Ant colony optimization on a limited budget of evaluations. Swarm Intell 9(2–3):103–124
Castellani M, Pham QT, Pham DT (2012) Dynamic optimisation by a modified bees algorithm. Proc Inst Mech Eng Part I J Syst Control Eng 226(7):956–971
Chen XH, Lee WP, Liao CY, Dai JT (2007) Adaptive constriction factor for location-related particle swarm. In: Proceedings of the 8th Conference on 8th WSEAS international conference on evolutionary computing, vol 8. World Scientific and Engineering Academy and Society (WSEAS), pp 307–313
Clerc M (1999) The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation, CEC 99, vol 3. IEEE, pp 1951–1957
Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73
Collins LM, Dziak JJ, Li R (2009) Design of experiments with multiple independent variables: a resource management perspective on complete and reduced factorial designs. Psychol Methods 14(3):202
Darwin C (1859) On the origin of species by means of natural selection. Murray, London
Das S, Mullick SS, Suganthan P (2016) Recent advances in differential evolution—an updated survey. Swarm Evol Comput 27:1–30
Dasgupta S, Das S, Abraham A, Biswas A (2009) Adaptive computational chemotaxis in bacterial foraging optimization: an analysis. IEEE Trans Evol Comput 13(4):919–941
Dasgupta S, Das S, Biswas A, Abraham A (2010) Automatic circle detection on digital images with an adaptive bacterial foraging algorithm. Soft Comput 14(11):1151–1164
Deb K (1995) Optimization for engineering design. Prentice-Hall, India
Del Valle Y, Venayagamoorthy GK, Mohagheghi S, Hernandez JC, Harley RG (2008) Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans Evol Comput 12(2):171–195
Dorigo M (1992) Optimization, learning and natural algorithms. PhD thesis, Politecnico di Milano, Italy
Dorigo M, Gambardella LM (1997) Ant colonies for the travelling salesman problem. BioSystems 43(2):73–81
Dorigo M, Stützle T (2009) Ant colony optimization: overview and recent advances. Techreport, IRIDIA, Universite Libre de Bruxelles
Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B Cybern 26(1):29–41
Eberhart RC, Shi Y (2000) Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 congress on evolutionary computation, vol 1. IEEE, pp 84–88
Eiben AE, Smit SK (2011a) Evolutionary algorithm parameters and methods to tune them. Autonomous search. Springer, Berlin, pp 15–36
Eiben AE, Smit SK (2011b) Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol Comput 1(1):19–31
Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control in evolutionary algorithms. IEEE Trans Evol Comput 3(2):124–141
El-Gallad A, El-Hawary M, Sallam A, Kalas A (2002) Enhancing the particle swarm optimizer via proper parameters selection. In: Canadian conference on electrical and computer engineering, IEEE CCECE 2002, vol 2. IEEE, Canada, pp 792–797
Erskine A, Herrmann JM (2014) Crips: Critical dynamics in particle swarm optimization. arXiv preprint arXiv:14026888
Esmin AA, Coelho RA, Matwin S (2015) A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data. Artif Intell Rev 44(1):23–45
Fan H, Shi Y (2001) Study on vmax of particle swarm optimization. In: Proc. Workshop on particle swarm optimization, Purdue School of Engineering and Technology
Farhat I, El-Hawary M (2010) Dynamic adaptive bacterial foraging algorithm for optimum economic dispatch with valve-point effects and wind power. IET Gener Transm Distrib 4(9):989–999
Favaretto D, Moretti E, Pellegrini P (2009) On the explorative behavior of max–min ant system. In: International workshop on engineering stochastic local search algorithms. Springer, pp 115–119
Fister Jr I, Yang XS, Fister I, Brest J, Fister D (2013) A brief review of nature-inspired algorithms for optimization. arXiv preprint arXiv:13074186
Flood MM (1956) The traveling-salesman problem. Oper Res 4(1):61–75
Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman & Co., New York
Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–72
Hu M, Wu T, Weir JD (2012) An intelligent augmentation of particle swarm optimization with multiple adaptive methods. Inf Sci 213:68–83
Hu M, Wu TF, Weir JD (2013) An adaptive particle swarm optimization with multiple adaptive methods. IEEE Trans Evol Comput 17(5):705–720
Hu X, Eberhart R (2002) Multiobjective optimization using dynamic neighborhood particle swarm optimization. In: Evolutionary computation. IEEE, pp 1677–1681
Hussain K, Salleh MNM, Cheng S, Shi Y (2018) On the exploration and exploitation in popular swarm-based metaheuristic algorithms. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3592-0
Hussein WA, Sahran S, Abdullah SNHS (2014) Patch-levy-based initialization algorithm for bees algorithm. Appl Soft Comput 23:104–121
Hussein WA, Sahran S, Sheikh Abdullah S (2015) An improved bees algorithm for real parameter optimization. Int J Adv Comput Sci Appl 6:23–39
Jevtié A, Andina D (2010) Adaptive artificial ant colonies for edge detection in digital images. In: IECON 2010-36th annual conference on IEEE industrial electronics society. IEEE, pp 2813–2816
Jhang JY, Lin CJ, Lin CT, Young KY (2018) Navigation control of mobile robots using an interval type-2 fuzzy controller based on dynamic-group particle swarm optimization. Int J Control Autom Syst 16(5):2446–2457
Jiao R, Sun Y, Sun J, Jiang Y, Zeng S (2018) Antenna design using dynamic multi-objective evolutionary algorithm. IET Microw Antennas Propag 12(13):2065–2072
Karafotias G, Hoogendoorn M, Eiben ÁE (2015) Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans Evol Comput 19(2):167–187
Kennedy J (1997) The particle swarm: social adaptation of knowledge. In: IEEE international conference on evolutionary computation, 1997. IEEE, pp 303–308
Kennedy J (1999) Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proceedings of the 1999 congress on evolutionary computation, 1999, CEC 99, vol 3. IEEE, pp 1931–1938
Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings, IEEE international conference on neural networks, vol 4. IEEE, pp 1942–1948
Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In: Proceedings of the 2002 congress on evolutionary computation, CEC’02, vol 2. IEEE, pp 1671–1676
Kennedy J, Kennedy JF, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kaufmann, Burlington
Khanmirzaei Z, Teshnehlab M, Sharifi A (2010) Modified honey bee optimization for recurrent neuro-fuzzy system model. In: 2010 The 2nd international conference on computer and automation engineering (ICCAE), vol 5. IEEE, pp 780–785
Kiranyaz S, Pulkkinen J, Gabbouj M (2011) Multi-dimensional particle swarm optimization in dynamic environments. Expert Syst Appl 38(3):2212–2223
Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection, vol 1. MIT Press, Cambridge
Kramer O (2010) Evolutionary self-adaptation: a survey of operators and strategy parameters. Evol Intell 3(2):51–65
Krohling RA (2005) Gaussian particle swarm with jumps. In: The 2005 IEEE congress on evolutionary computation, vol 2. IEEE, pp 1226–1231
Langton CG (1990) Computation at the edge of chaos: phase transitions and emergent computation. Phys D Nonlinear Phenom 42(1):12–37
Li G, Qian C, Jiang C, Lu X, Tang K (2018) Optimization based layer-wise magnitude-based pruning for dnn compression. In: IJCAI, pp 2383–2389
Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295
Lin FT, Kao CY, Hsu CC (1993) Applying the genetic approach to simulated annealing in solving some np-hard problems. IEEE Trans Syst Man Cybern 23(6):1752–1767
Lin JH, Chou CW, Yang CH, Tsai HL et al (2012) A chaotic levy flight bat algorithm for parameter estimation in nonlinear dynamic biological systems. J Comput Inf Technol 2(2):56–63
López-Ibánez M, Dubois-Lacoste J, Stützle T, Birattari M (2011) The irace package, iterated race for automatic algorithm configuration. Tech. rep, Citeseer
López-Ibáñez M, Dubois-Lacoste J, Cáceres LP, Birattari M, Stützle T (2016) The irace package: iterated racing for automatic algorithm configuration. Oper Res Perspect 3:43–58
Lovbjerg M, Rasmussen TK, Krink T (2001) Hybrid particle swarm optimiser with breeding and subpopulations. Proc Genetic Evol Comput Conf Citeseer 2001:469–476
Majhi R, Panda G, Majhi B, Sahoo G (2009) Efficient prediction of stock market indices using adaptive bacterial foraging optimization (abfo) and bfo based techniques. Expert Syst Appl 36(6):10097–10104
Melin P, Olivas F, Castillo O, Valdez F, Soria J, Valdez M (2013) Optimal design of fuzzy classification systems using pso with dynamic parameter adaptation through fuzzy logic. Expert Syst Appl 40(8):3196–3206
Mendes R, Kennedy J, Neves J (2004) The fully informed particle swarm: simpler, maybe better. IEEE Trans Evol Comput 8(3):204–210
Mezura-Montes E, López-Dávila EA (2012) Adaptation and local search in the modified bacterial foraging algorithm for constrained optimization. In: 2012 IEEE congress on evolutionary computation, IEEE, pp 1–8
Mirjalili S (2015a) The ant lion optimizer. Adv Eng Softw 83:80–98
Mirjalili S (2015b) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249
Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073
Mirjalili S, Lewis A (2014) Adaptive gbest-guided gravitational search algorithm. Neural Comput Appl 25(7–8):1569–1584
Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67
Montgomery DC (2001) Design and analysis of experiments, 5th edn. Wiley, New Delhi
Musilek P, Krömer P, Bartoň T (2015) Review of nature-inspired methods for wake-up scheduling in wireless sensor networks. Swarm Evol Comput 25:100–118
Nanda SJ, Panda G (2014) A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evol Comput 16:1–18
Nápoles G, Grau I, Bello M, Bello R (2014) Towards swarm diversity: random sampling in variable neighborhoods procedure using a Lévy distribution. Computación y Sistemas 18(1):79–95
Nguyen TT, Yang S, Branke J (2012) Evolutionary dynamic optimization: a survey of the state of the art. Swarm Evol Comput 6:1–24
Nickabadi A, Ebadzadeh MM, Safabakhsh R (2011) A novel particle swarm optimization algorithm with adaptive inertia weight. Appl Soft Comput 11(4):3658–3670
Olivas F, Valdez F, Castillo O (2015) Ant colony optimization with parameter adaptation using fuzzy logic for tsp problems. Design of intelligent systems based on fuzzy logic. Neural networks and nature-inspired optimization. Springer, Berlin, pp 593–603
Olivas F, Valdez F, Castillo O, Melin P (2016) Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic. Soft Comput 20(3):1057–1070
Olorunda O, Engelbrecht AP (2008) Measuring exploration/exploitation in particle swarms using swarm diversity. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). IEEE, pp 1128–1134
Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst 22(3):52–67
Pavlyukevich I (2007) Lévy flights, non-local search and simulated annealing. J Comput Phys 226(2):1830–1844
Pham D, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2011) The bees algorithm—a novel tool for complex optimisation. In: Intelligent production machines and systems-2nd I* PROMS virtual international conference, Elsevier, p 454
Pham DT, Castellani M (2009) The bees algorithm: modelling foraging behaviour to solve continuous optimization problems. Proc Inst Mech Eng Part C J Mech Eng Sci 223(12):2919–2938
Pham DT, Soroka AJ, Ghanbarzadeh A, Koc E, Otri S, Packianather M (2006) Optimising neural networks for identification of wood defects using the bees algorithm. In: 2006 4th IEEE international conference on industrial informatics. IEEE, pp 1346–1351
Pham Q (2007) Using statistical analysis to tune an evolutionary algorithm for dynamic optimization with progressive step reduction. Comput Chem Eng 31(11):1475–1483
Pham QT, Pham DT, Castellani M (2012) A modified bees algorithm and a statistics-based method for tuning its parameters. Proc Inst Mech Eng Part I J Syst Control Eng 226(3):287–301
Pluhacek M, Senkerik R, Davendra D, Oplatkova ZK, Zelinka I (2013a) On the behavior and performance of chaos driven pso algorithm with inertia weight. Comput Math Appl 66(2):122–134
Pluhacek M, Senkerik R, Zelinka I, Davendra D (2013b) Chaos PSO algorithm driven alternately by two different chaotic maps-an initial study. In: IEEE congress on evolutionary computation, pp 2444–2449
Pluhacek M, Senkerik R, Zelinka I (2014) Particle swarm optimization algorithm driven by multichaotic number generator. Soft Comput 18(4):631–639
Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1(1):33–57
Pornsing C, Sodhi MS, Lamond BF (2016) Novel self-adaptive particle swarm optimization methods. Soft Comput 20(9):3579–3593
Potter MA, Jong KAD (2000) Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol Comput 8(1):1–29
Richer TJ, Blackwell TM (2006) The Lévy particle swarm. In: IEEE congress on evolutionary computation, CEC 2006. IEEE, pp 808–815
Ruz GA, Goles E (2013) Learning gene regulatory networks using the bees algorithm. Neural Comput Appl 22(1):63–70
Şahin E (2004) Swarm robotics: from sources of inspiration to domains of application. International workshop on swarm robotics. Springer, Berlin, pp 10–20
Sajja PS, Akerkar R (2013) Bio-inspired models for semantic web. Swarm intelligence and bio-inspired computation: theory and applications. Elsevier, Wlatham, pp 273–294
Sanyal N, Chatterjee A, Munshi S (2011) An adaptive bacterial foraging algorithm for fuzzy entropy based image segmentation. Expert Syst Appl 38(12):15489–15498
Schrijver A (2000) A course in combinatorial optimization. TU Delft
Senanayake M, Senthooran I, Barca JC, Chung H, Kamruzzaman J, Murshed M (2016) Search and tracking algorithms for swarms of robots: a survey. Robot Auton Syst 75:422–434
Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: The 1998 IEEE international conference on evolutionary computation proceedings, 1998. IEEE World Congress on Computational Intelligence. IEEE, pp 69–73
Shi Y, Eberhart R (2001) Particle swarm optimization with fuzzy adaptive inertia weight. In: Proceedings of the workshop on particle swarm optimization, vol 1. Purdue School of Engineering and Technology, pp 101–106
Shi Y, Eberhart RC (1999) Empirical study of particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation, CEC 99, vol 3. IEEE, pp 1945–1950
Sörensen K (2015) Metaheuristics the metaphor exposed. Int Trans Oper Res 22(1):3–18
Stützle T, López-Ibánez M, Pellegrini P, Maur M, De Oca MM, Birattari M, Dorigo M (2011) Parameter adaptation in ant colony optimization. Autonomous search. Springer, Berlin, pp 191–215
Suganthan PN (1999) Particle swarm optimiser with neighbourhood operator. In: Proceedings of the 1999 congress on evolutionary computation, CEC 99, vol 3. IEEE, pp 1958–1962
Sun J, Feng B, Xu W (2004) Particle swarm optimization with particles having quantum behavior. In: Congress on evolutionary computation, CEC2004, vol 1. IEEE, pp 325–331
Sun J, Xu W, Feng B (2005) Adaptive parameter control for quantum-behaved particle swarm optimization on individual level. In: 2005 IEEE international conference on systems, man and cybernetics, vol 4. IEEE, pp 3049–3054
Talbi EG (2009) Metaheuristics: from design to implementation, vol 74. Wiley, New York
Tang D, Dai M, Salido MA, Giret A (2016) Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization. Comput Ind 81:82–95. https://doi.org/10.1016/j.compind.2015.10.001
Tang K, Yang P, Yao X (2016) Negatively correlated search. IEEE J Sel Areas Commun 34(3):542–550. https://doi.org/10.1109/JSAC.2016.2525458
Tanweer M, Suresh S, Sundararajan N (2016) Dynamic mentoring and self-regulation based particle swarm optimization algorithm for solving complex real-world optimization problems. Inf Sci 326:1–24. https://doi.org/10.1016/j.ins.2015.07.035
Thangeda P, Bhattacharya AK, Gopal R, Kumar RA (2018) Synthesis of optimal trajectories in aerial engagements using differential evolution. IFAC-PapersOnLine 51(1):90–97. https://doi.org/10.1016/j.ifacol.2018.05.016
Tian J, Tan Y, Zeng J, Sun C, Jin Y (2018) Multi-objective infill criterion driven gaussian process assisted particle swarm optimization of high-dimensional expensive problems. IEEE Trans Evol Comput. https://doi.org/10.1109/TEVC.2018.2869247
Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85(6):317–325
Tripathi PK, Bandyopadhyay S, Pal SK, (2007) Adaptive multi-objective particle swarm optimization algorithm. In: IEEE congress on evolutionary computation, CEC 2007. IEEE, pp 2281–2288
Tsai HC (2014) Novel bees algorithm: stochastic self-adaptive neighborhood. Appl Math Comput 247:1161–1172
Van den Bergh F, Engelbrecht AP (2004) A cooperative approach to particle swarm optimization. IEEE Trans Evol Comput 8(3):225–239
Wang G, Chu HE, Zhang Y, Chen H, Hu W, Li Y, Peng X (2015) Multiple parameter control for ant colony optimization applied to feature selection problem. Neural Comput Appl 26(7):1693–1708
Wang Y, Li B, Weise T, Wang J, Yuan B, Tian Q (2011) Self-adaptive learning based particle swarm optimization. Inf Sci 181(20):4515–4538
Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82
Wu Q, Zhu Z, Yan X, Gong W (2018) An improved particle swarm optimization algorithm for avo elastic parameter inversion problem. Concurr Comput Pract Exp, p e4987
Wu Y, Liu G, Guo X, Shi Y, Xie L (2017) A self-adaptive chaos and kalman filter-based particle swarm optimization for economic dispatch problem. Soft Comput 21(12):3353–3365
Xu G (2013) An adaptive parameter tuning of particle swarm optimization algorithm. Appl Math Comput 219(9):4560–4569
Yamaguchi T, Yasuda K (2006) Adaptive particle swarm optimization; self-coordinating mechanism with updating information. In: IEEE international conference on systems, man and cybernetics, SMC’06, vol 3. IEEE, pp 2303–2308
Yan X, Zhu Y, Zhang H, Chen H, Niu B (2012) An adaptive bacterial foraging optimization algorithm with lifecycle and social learning. Discret Dyn Nat Soc 2012:1–20
Yang P, Lu G, Tang K, Yao X (2016) A multi-modal optimization approach to single path planning for unmanned aerial vehicle. In: 2016 IEEE congress on evolutionary computation (CEC), IEEE, pp 1735–1742
Yang P, Tang K, Yao X (2018) Turning high-dimensional optimization into computationally expensive optimization. IEEE Trans Evol Comput 22(1):143–156
Yang Q, Chen WN, Yu Z, Gu T, Li Y, Zhang H, Zhang J (2017) Adaptive multimodal continuous ant colony optimization. IEEE Trans Evol Comput 21(2):191–205
Yang XS (2008) Nature-inspired metaheuristic algorithms. Luniver Press, Frome
Yang XS (2010) Firefly algorithm, Levy flights and global optimization. Research and development in intelligent systems XXVI. Springer, Berlin, pp 209–218
Yang XS (2012) Efficiency analysis of swarm intelligence and randomization techniques. J Comput Theoret Nanosci 9(2):189–198
Yang XS, He X (2013) Bat algorithm: literature review and applications. Int J Bio-Inspir Comput 5(3):141–149
Yasuda T, Ohkura K, Matsumura Y (2010) Extended PSO with partial randomization for large scale multimodal problems. In: World automation congress (WAC), 2010, IEEE, pp 1–6
Zhan ZH, Zhang J, Li Y, Chung HSH (2009) Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern Part B (Cybernetics) 39(6):1362–1381
Zheng F, Zecchin A, Newman J, Maier H, Dandy G (2017) An adaptive convergence-trajectory controlled ant colony optimization algorithm with application to water distribution system design problems. IEEE Trans Evol Comput 21(5):773–791
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors Han Phan, Kirsten Ellis, Jan Carlo Barca declare that they have no conflict of interest. The author Alan Dorin is a member of the editorial board for the journal Neural Computing and Applications.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Rights and permissions
About this article
Cite this article
Phan, H.D., Ellis, K., Barca, J.C. et al. A survey of dynamic parameter setting methods for nature-inspired swarm intelligence algorithms. Neural Comput & Applic 32, 567–588 (2020). https://doi.org/10.1007/s00521-019-04229-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-019-04229-2