Skip to main content
Log in

Predicting ultimate bond strength of corroded reinforcement and surrounding concrete using a metaheuristic optimized least squares support vector regression model

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The ultimate bond strength of corroded steel reinforcement and surrounding concrete critically affects the load carrying capacity and eventually serviceability of the reinforced concrete structures. This study constructs and verifies a data-driven method for estimating ultimate bond strength. The proposed method is a hybridization of least squares support vector regression (LSSVR) and differential flower pollination (DFP) computational intelligence approaches. Since the problem of ultimate bond strength prediction involves nonlinear and multivariate data modeling, the LSSVR is employed to infer the mapping function between ultimate bond strength and its influencing factors of concrete compressive strength, concrete cover, steel type, diameter of steel bar, bond length, and corrosion level. Moreover, in order to overcome the very challenging task of fine-tuning the LSSVR model training, the DFP algorithm, as a population-based metaheuristic, is utilized to optimize the performance of the LSSVR prediction model. A dataset including 218 experimental tests has been collected from the literature to construct and verify the proposed hybrid method. Experimental results supported by the Wilcoxon signed-rank test point out that the hybridization of LSSVR and DFP can deliver predictive results (root-mean-square error = 2.39, mean absolute percentage error = 33.82%, and coefficient of determination = 0.84) superior to those of benchmark models including the artificial neural network, the multivariate adaptive regression splines, and the regression tree. Additionally, a software program based on the LSSVR model and the DFP optimization result has also been developed and compiled in Visual C#.Net to ease the model implementation. Hence, the hybrid model of DFP and LSSVR can be a promising alternative to assist engineers in the task of evaluating the health of reinforced concrete structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Afan HA, El-Shafie A, Yaseen ZM, Hameed MM, Wan Mohtar WHM, Hussain A (2015) ANN based sediment prediction model utilizing different input scenarios. Water Resour Manag 29:1231–1245. https://doi.org/10.1007/s11269-014-0870-1

    Article  Google Scholar 

  2. Al-Sulaimani GJ, Kaleemullah M, Basunbul M, Rasheeduzzafar (1990) Influence of corrosion and cracking on bond behavior and strength of reinforced concrete members. Struct J 87:220–231. https://doi.org/10.14359/2732

    Article  Google Scholar 

  3. Al-Zwainy FMS, Zaki RIK, Al-saadi AM, Ibraheem HF (2018) Validity of artificial neural modeling to estimate time-dependent deflection of reinforced concrete beams. Cogent Eng 5:1–15. https://doi.org/10.1080/23311916.2018.1477485

    Article  Google Scholar 

  4. Almusallam AA, Al-Gahtani AS, Aziz AR, Rasheeduzzafar (1996) Effect of reinforcement corrosion on bond strength. Constr Build Mater 10:123–129. https://doi.org/10.1016/0950-0618(95)00077-1

    Article  Google Scholar 

  5. Auyeung Y, Balaguru P, Chung L (2000) Bond behavior of corroded reinforcement bars. Mater J 97:214–220. https://doi.org/10.14359/826

    Article  Google Scholar 

  6. Bilcik J, Holly I (2013) Effect of reinforcement corrosion on bond behaviour. Procedia Eng 65:248–253. https://doi.org/10.1016/j.proeng.2013.09.038

    Article  Google Scholar 

  7. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classifcation and regression trees. Wadsworth and Brooks, Montery (ISBN-13: 978-1138469525, ISBN-10: 1138469521)

    MATH  Google Scholar 

  8. Bui D-K, Nguyen T, Chou J-S, Nguyen-Xuan H, Ngo TD (2018) A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete. Constr Build Mater 180:320–333. https://doi.org/10.1016/j.conbuildmat.2018.05.201

    Article  Google Scholar 

  9. Chen W et al (2017) A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA 151:147–160. https://doi.org/10.1016/j.catena.2016.11.032

    Article  Google Scholar 

  10. Cheng M-Y, Hoang N-D (2018) Estimating construction duration of diaphragm wall using firefly-tuned least squares support vector machine. Neural Comput Appl 30:2489–2497. https://doi.org/10.1007/s00521-017-2840-z

    Article  Google Scholar 

  11. Cheng M-Y, Prayogo D, Wu Y-W (2018) Prediction of permanent deformation in asphalt pavements using a novel symbiotic organisms search–least squares support vector regression. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3426-0

    Article  Google Scholar 

  12. Chung L, Jay Kim J-H, Yi S-T (2008) Bond strength prediction for reinforced concrete members with highly corroded reinforcing bars. Cement Concr Compos 30:603–611. https://doi.org/10.1016/j.cemconcomp.2008.03.006

    Article  Google Scholar 

  13. Coccia S, Imperatore S, Rinaldi Z (2016) Influence of corrosion on the bond strength of steel rebars in concrete. Mater Struct 49:537–551. https://doi.org/10.1617/s11527-014-0518-x

    Article  Google Scholar 

  14. Dahou Z, Mehdi Sbartaï Z, Castel A, Ghomari F (2009) Artificial neural network model for steel–concrete bond prediction. Eng Struct 31:1724–1733. https://doi.org/10.1016/j.engstruct.2009.02.010

    Article  Google Scholar 

  15. Deng F, He Y, Zhou S, Yu Y, Cheng H, Wu X (2018) Compressive strength prediction of recycled concrete based on deep learning. Constr Build Mater 175:562–569. https://doi.org/10.1016/j.conbuildmat.2018.04.169

    Article  Google Scholar 

  16. Deng S, Wang X, Zhu Y, Lv F, Wang J (2019) Hybrid Grey wolf optimization algorithm based support vector machine for groutability prediction of fractured rock mass. J Comput Civ Eng 33:04018065. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000814

    Article  Google Scholar 

  17. Faizollahzadeh Ardabili S, Najafi B, Shamshirband S, Minaei Bidgoli B, Deo RC, K-w C (2018) Computational intelligence approach for modeling hydrogen production: a review. Eng Appl Comput Fluid Mech 12:438–458. https://doi.org/10.1080/19942060.2018.1452296

    Article  Google Scholar 

  18. Fang C, Lundgren K, Chen L, Zhu C (2004) Corrosion influence on bond in reinforced concrete. Cem Concr Res 34:2159–2167. https://doi.org/10.1016/j.cemconres.2004.04.006

    Article  Google Scholar 

  19. Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19:1–67

    Article  MathSciNet  Google Scholar 

  20. Fu X, Chung DDL (1997) Effect of corrosion on the bond between concrete and steel rebar. Cem Concr Res 27:1811–1815. https://doi.org/10.1016/S0008-8846(97)00172-5

    Article  Google Scholar 

  21. García Nieto PJ, García-Gonzalo E, Bernardo Sánchez A, Menéndez Fernández M (2016) A new predictive model based on the ABC optimized multivariate adaptive regression splines approach for predicting the remaining useful life in aircraft engines. Energies 9:409

    Article  Google Scholar 

  22. Gholampour A, Mansouri I, Kisi O, Ozbakkaloglu T (2018) Evaluation of mechanical properties of concretes containing coarse recycled concrete aggregates using multivariate adaptive regression splines (MARS), M5 model tree (M5Tree), and least squares support vector regression (LSSVR) models. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3630-y

    Article  Google Scholar 

  23. Goh ATC, Zhang W, Zhang Y, Xiao Y, Xiang Y (2018) Determination of earth pressure balance tunnel-related maximum surface settlement: a multivariate adaptive regression splines approach. Bull Eng Geol Environ 77:489–500. https://doi.org/10.1007/s10064-016-0937-8

    Article  Google Scholar 

  24. Golafshani EM, Rahai A, Sebt MH, Akbarpour H (2012) Prediction of bond strength of spliced steel bars in concrete using artificial neural network and fuzzy logic. Constr Build Mater 36:411–418. https://doi.org/10.1016/j.conbuildmat.2012.04.046

    Article  Google Scholar 

  25. Güneyisi E, Gesoğlu M, Karaboğa F, Mermerdaş K (2013) Corrosion behavior of reinforcing steel embedded in chloride contaminated concretes with and without metakaolin. Compos B Eng 45:1288–1295. https://doi.org/10.1016/j.compositesb.2012.09.085

    Article  Google Scholar 

  26. Güneyisi EM, Mermerdaş K, Gültekin A (2016) Evaluation and modeling of ultimate bond strength of corroded reinforcement in reinforced concrete elements. Mater Struct 49:3195–3215. https://doi.org/10.1617/s11527-015-0713-4

    Article  Google Scholar 

  27. Heddam S, Kisi O (2018) Modelling daily dissolved oxygen concentration using least square support vector machine, multivariate adaptive regression splines and M5 model tree. J Hydrol 559:499–509. https://doi.org/10.1016/j.jhydrol.2018.02.061

    Article  Google Scholar 

  28. Hoang N-D (2019) Estimating punching shear capacity of steel fibre reinforced concrete slabs using sequential piecewise multiple linear regression and artificial neural network. Measurement 137:58–70. https://doi.org/10.1016/j.measurement.2019.01.035

    Article  Google Scholar 

  29. Hoang N-D (2019) Image processing based automatic recognition of asphalt pavement patch using a metaheuristic optimized machine learning approach. Adv Eng Inf 40:110–120. https://doi.org/10.1016/j.aei.2019.04.004

    Article  Google Scholar 

  30. Hoang N-D, Bui DT (2018) Predicting earthquake-induced soil liquefaction based on a hybridization of kernel Fisher discriminant analysis and a least squares support vector machine: a multi-dataset study. Bull Eng Geol Environ 77:191–204. https://doi.org/10.1007/s10064-016-0924-0

    Article  Google Scholar 

  31. Hoang N-D, Chen C-T, Liao K-W (2017) Prediction of chloride diffusion in cement mortar using multi-gene genetic programming and multivariate adaptive regression splines. Measurement 112:141–149. https://doi.org/10.1016/j.measurement.2017.08.031

    Article  Google Scholar 

  32. Hoang N-D, Tien Bui D, Liao K-W (2016) Groutability estimation of grouting processes with cement grouts using differential flower pollination optimized support vector machine. Appl Soft Comput 45:173–186. https://doi.org/10.1016/j.asoc.2016.04.031

    Article  Google Scholar 

  33. Hollander M, Wolfe DA (1999) Nonparametric statistical methods. Wiley, Hoboken

    MATH  Google Scholar 

  34. Horrigmoe G, Sæther I, Antonsen R, Arntsen B (2007) Laboratory investigations of steel bar corrosion in concrete. Background document SB310. Sustainable bridges: assessment for future traffic demands and longer lives. A project co-funded by the European Commission within the Sixth Framework Programme 2007

  35. Jekabsons G (2016) ARESLab: adaptive regression splines toolbox for matlab/octave technical report, Riga Technical University. http://www.csrtulv/jekabsons/

  36. Kanungo DP, Sharma S, Pain A (2014) Artificial neural network (ANN) and regression tree (CART) applications for the indirect estimation of unsaturated soil shear strength parameters. Front Earth Sci 8:439–456. https://doi.org/10.1007/s11707-014-0416-0

    Article  Google Scholar 

  37. Książek W, Abdar M, Acharya UR, Pławiak P (2019) A novel machine learning approach for early detection of hepatocellular carcinoma patients. Cogn Syst Res 54:116–127. https://doi.org/10.1016/j.cogsys.2018.12.001

    Article  Google Scholar 

  38. Kurtoglu AE, Gulsan ME, Abdi HA, Kamil MA, Cevik A (2017) Fiber reinforced concrete corbels: modeling shear strength via symbolic regression. Comput Concr 20:065–075

    Google Scholar 

  39. Lee H-S, Noguchi T, Tomosawa F (2002) Evaluation of the bond properties between concrete and reinforcement as a function of the degree of reinforcement corrosion. Cem Concr Res 32:1313–1318. https://doi.org/10.1016/S0008-8846(02)00783-4

    Article  Google Scholar 

  40. Li S, Fang H, Liu X (2018) Parameter optimization of support vector regression based on sine cosine algorithm. Expert Syst Appl 91:63–77. https://doi.org/10.1016/j.eswa.2017.08.038

    Article  Google Scholar 

  41. Liao K-W, Hoang N-D, Gitomarsono J (2018) A probabilistic safety evaluation framework for multi-hazard assessment in a bridge using SO-MARS learning model KSCE. J Civ Eng 22:903–915. https://doi.org/10.1007/s12205-018-1291-0

    Article  Google Scholar 

  42. Luo H, Paal SG (2018) Machine learning-based backbone curve model of reinforced concrete columns subjected to cyclic loading reversals. J Comput Civ Eng 32:04018042. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000787

    Article  Google Scholar 

  43. Matwork (2017) Statistics and machine learning toolbox user’s guide. Matwork Inc., https://www.mathworks.com/help/pdf_doc/stats/stats.pdf. Date of last access: 28 Apr 2018

  44. McRae GJ, Tilden JW, Seinfeld JH (1982) Global sensitivity analysis—a computational implementation of the fourier amplitude sensitivity test (FAST). Comput Chem Eng 6:15–25. https://doi.org/10.1016/0098-1354(82)80003-3

    Article  Google Scholar 

  45. Moazenzadeh R, Mohammadi B, Shamshirband S, K-w C (2018) Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran. Eng Appl Comput Fluid Mech 12:584–597. https://doi.org/10.1080/19942060.2018.1482476

    Article  Google Scholar 

  46. Molina FJ, Alonso C, Andrade C (1993) Cover cracking as a function of rebar corrosion: part 2—numerical model. Mater Struct 26:532–548. https://doi.org/10.1007/bf02472864

    Article  Google Scholar 

  47. Montavon G, Orr G, Müller K-R (2012) Neural networks: tricks of the trade. Springer, Berlin. https://doi.org/10.1007/978-3-642-35289-8

    Book  Google Scholar 

  48. Nepal J, Chen HP, Alani AM (2013) Analytical modelling of bond strength degradation due to reinforcement corrosion. In: Key engineering materials. Trans Tech Publications, pp 1060–1067

  49. Nhu V-H, Hoang N-D, Duong V-B, Vu H-D, Tien Bui D (2019) A hybrid computational intelligence approach for predicting soil shear strength for urban housing construction: a case study at Vinhomes Imperia project. Eng Comput, Hai Phong city. https://doi.org/10.1007/s00366-019-00718-z

    Book  Google Scholar 

  50. Niu D, Dai S (2017) A short-term load forecasting model with a modified particle swarm optimization algorithm and least squares support vector machine based on the denoising method of empirical mode decomposition and grey relational analysis. Energies 10:408

    Article  Google Scholar 

  51. Pham BT, Son LH, Hoang T-A, Nguyen D-M, Tien Bui D (2018) Prediction of shear strength of soft soil using machine learning methods. CATENA 166:181–191. https://doi.org/10.1016/j.catena.2018.04.004

    Article  Google Scholar 

  52. Pianosi F, Sarrazin F, Wagener T (2015) A matlab toolbox for global sensitivity analysis. Environ Model Softw 70:80–85. https://doi.org/10.1016/j.envsoft.2015.04.009

    Article  Google Scholar 

  53. Pianosi F, Sarrazin F, Wagener T (2019) SAFE toolbox. https://www.safetoolboxinfo/about-us/. Last Access Date: 18 Feb 2019

  54. Pławiak P (2018) Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ECG signals. Swarm Evol Comput 39:192–208. https://doi.org/10.1016/j.swevo.2017.10.002

    Article  Google Scholar 

  55. Pławiak P (2018) Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system. Expert Syst Appl 92:334–349. https://doi.org/10.1016/j.eswa.2017.09.022

    Article  Google Scholar 

  56. Pławiak P, Sośnicki T, Niedźwiecki M, Tabor Z, Rzecki K (2016) Hand body language gesture recognition based on signals from specialized glove and machine learning algorithms. IEEE Trans Ind Inf 12:1104–1113. https://doi.org/10.1109/TII.2016.2550528

    Article  Google Scholar 

  57. Price KV, Storn RM, Lampinen JA (2005) Differential evolution a practical approach to global optimization. Springer, Berlin

    MATH  Google Scholar 

  58. Qi C, Fourie A, Zhao X (2018) Back-analysis method for stope displacements using gradient-boosted regression tree and firefly algorithm. J Comput Civ Eng 32:04018031. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000779

    Article  Google Scholar 

  59. Rad HN, Hasanipanah M, Rezaei M, Eghlim AL (2017) Developing a least squares support vector machine for estimating the blast-induced flyrock. Eng Comput. https://doi.org/10.1007/s00366-017-0568-0

    Article  Google Scholar 

  60. Sachdeva S, Bhatia T, Verma AK (2017) Flood susceptibility mapping using GIS-based support vector machine and particle swarm optimization: a case study in Uttarakhand (India). In: 2017 8th international conference on computing, communication and networking technologies (ICCCNT), 3–5 July 2017, pp 1–7. https://doi.org/10.1109/icccnt.2017.8204182

  61. Sadowski Ł, Nikoo M, Shariq M, Joker E, Czarnecki S (2019) The nature-inspired metaheuristic method for predicting the creep strain of green concrete containing ground granulated blast furnace slag. Materials 12:293

    Article  Google Scholar 

  62. Sæther I (2011) Bond deterioration of corroded steel bars in concrete. Struct Infrastruct Eng 7:415–429. https://doi.org/10.1080/15732470802674836

    Article  Google Scholar 

  63. Shima H (2002) Local bond stress–slip relationship of corroded steel bars embedded in concrete In: Proceeding of the third international symposium on bond in concrete, Budapest, pp 153–158

  64. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  65. Suykens J, Gestel JV, Brabanter JD, Moor BD, Vandewalle J (2002) Least squares support vector machines. World Scientific, New Jersey (ISBN-13: 978-9812381514, ISBN-10: 9812381511)

    Book  Google Scholar 

  66. Taffese WZ, Sistonen E (2017) Machine learning for durability and service-life assessment of reinforced concrete structures: recent advances and future directions. Autom Constr 77:1–14. https://doi.org/10.1016/j.autcon.2017.01.016

    Article  Google Scholar 

  67. Taherei Ghazvinei P, Hassanpour Darvishi H, Mosavi A, KbW Y, Alizamir M, Shamshirband S, K-w C (2018) Sugarcane growth prediction based on meteorological parameters using extreme learning machine and artificial neural network. Eng Appl Comput Fluid Mech 12:738–749. https://doi.org/10.1080/19942060.2018.1526119

    Article  Google Scholar 

  68. Taormina R, Chau K-W (2015) Data-driven input variable selection for rainfall–runoff modeling using binary-coded particle swarm optimization and extreme learning machines. J Hydrol 529:1617–1632. https://doi.org/10.1016/j.jhydrol.2015.08.022

    Article  Google Scholar 

  69. Tien Bui D, Hoang N-D, Samui P (2019) Spatial pattern analysis and prediction of forest fire using new machine learning approach of multivariate adaptive regression splines and differential flower pollination optimization: a case study at Lao Cai province (Viet Nam). J Environ Manag 237:476–487. https://doi.org/10.1016/j.jenvman.2019.01.108

    Article  Google Scholar 

  70. Tien Bui D, Nhu V-H, Hoang N-D (2018) Prediction of soil compression coefficient for urban housing project using novel integration machine learning approach of swarm intelligence and multi-layer perceptron neural network. Adv Eng Inf 38:593–604. https://doi.org/10.1016/j.aei.2018.09.005

    Article  Google Scholar 

  71. Tien Bui D, Tuan TA, Hoang N-D, Thanh NQ, Nguyen DB, Van Liem N, Pradhan B (2017) Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization. Landslides 14:447–458. https://doi.org/10.1007/s10346-016-0711-9

    Article  Google Scholar 

  72. Tondolo F (2015) Bond behaviour with reinforcement corrosion. Constr Build Mater 93:926–932. https://doi.org/10.1016/j.conbuildmat.2015.05.067

    Article  Google Scholar 

  73. Tran T-H, Hoang N-D (2016) Predicting colonization growth of algae on mortar surface with artificial neural network. J Comput Civ Eng 30:04016030. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000599

    Article  Google Scholar 

  74. Wu CL, Chau KW (2011) Rainfall–runoff modeling using artificial neural network coupled with singular spectrum analysis. J Hydrol 399:394–409. https://doi.org/10.1016/j.jhydrol.2011.01.017

    Article  Google Scholar 

  75. Wu Y-H, Shen H (2018) Grey-related least squares support vector machine optimization model and its application in predicting natural gas consumption demand. J Comput Appl Math 338:212–220. https://doi.org/10.1016/j.cam.2018.01.033

    Article  MathSciNet  MATH  Google Scholar 

  76. Yalciner H, Eren O, Sensoy S (2012) An experimental study on the bond strength between reinforcement bars and concrete as a function of concrete cover, strength and corrosion level. Cem Concr Res 42:643–655. https://doi.org/10.1016/j.cemconres.2012.01.003

    Article  Google Scholar 

  77. Yang X-S (2012) Flower pollination algorithm for global optimization. In: Durand-Lose J, Jonoska N (eds) Unconventional computation and natural computation, vol 7445. Lecture Notes in Computer Science. Springer, Berlin, pp 240–249. https://doi.org/10.1007/978-3-642-32894-7_27

    Chapter  Google Scholar 

  78. Yang X-S (2014) Nature-inspired optimization algorithms. Elsevier, New York

    MATH  Google Scholar 

  79. Yaseen ZM, Sulaiman SO, Deo RC, Chau K-W (2019) An enhanced extreme learning machine model for river flow forecasting: state-of-the-art, practical applications in water resource engineering area and future research direction. J Hydrol 569:387–408. https://doi.org/10.1016/j.jhydrol.2018.11.069

    Article  Google Scholar 

  80. Yi T, Zheng H, Tian Y, J-p L (2018) Intelligent prediction of transmission line project cost based on least squares support vector machine optimized by particle swarm optimization. Math Probl Eng 2018:11. https://doi.org/10.1155/2018/5458696

    Article  Google Scholar 

  81. Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13:945–958

    Article  Google Scholar 

  82. Zhao Y, Jin W (2002) Test study on bond behavior of corroded steel bars and concrete. J Zhejiang Univ Eng Sci Ed 36:352–356

    Google Scholar 

  83. Zhou Z, Zhang R, Zhu Z (2019) Uncalibrated dynamic visual servoing via multivariate adaptive regression splines and improved incremental extreme learning machine. ISA Trans 1:21. https://doi.org/10.1016/j.isatra.2019.02.029

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 105.08-2017.302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan-Linh Tran.

Ethics declarations

Conflict of interest

The authors of the manuscript confirm that there are no conflicts of interest regarding its publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The collected dataset

Appendix: The collected dataset

Reference

No.

Code of specimens

Compressive strength (Mpa)

Concrete cover (mm)

Steel type

Diameter of steel bar (mm)

Bond length, (mm)

Corrosion level (%)

Max. bond strength (Mpa)

Almusallam et al. [4]

1

1

30.00

64.00

2

12.00

102.00

0.00

15.86

 

2

2

30.00

64.00

2

12.00

102.00

2.00

16.25

 

3

3

30.00

64.00

2

12.00

102.00

2.50

16.38

 

4

4

30.00

64.00

2

12.00

102.00

2.60

17.81

 

5

5

30.00

64.00

2

12.00

102.00

4.00

18.59

 

6

6

30.00

64.00

2

12.00

102.00

5.00

17.03

 

7

7

30.00

64.00

2

12.00

102.00

5.50

16.38

 

8

8

30.00

64.00

2

12.00

102.00

6.50

13.52

 

9

9

30.00

64.00

2

12.00

102.00

7.00

10.79

 

10

10

30.00

64.00

2

12.00

102.00

8.00

4.94

 

11

11

30.00

64.00

2

12.00

102.00

8.50

4.68

 

12

12

30.00

64.00

2

12.00

102.00

11.50

3.38

 

13

13

30.00

64.00

2

12.00

102.00

15.50

3.12

 

14

14

30.00

64.00

2

12.00

102.00

20.50

2.73

 

15

15

30.00

64.00

2

12.00

102.00

32.50

2.68

 

16

16

30.00

64.00

2

12.00

102.00

48.00

2.63

 

17

17

30.00

64.00

2

12.00

102.00

60.20

2.50

 

18

18

30.00

64.00

2

12.00

102.00

80.00

2.44

Auyeung et al. [5]

19

1

28.00

79.40

2

19.00

177.80

0.00

6.32

 

20

2

28.00

79.40

2

19.00

178.80

0.00

5.79

 

21

3

28.00

79.40

2

19.00

179.80

0.72

7.67

 

22

4

28.00

79.40

2

19.00

180.80

0.72

7.13

 

23

5

28.00

79.40

2

19.00

181.80

0.98

8.41

 

24

6

28.00

79.40

2

19.00

182.80

1.23

4.91

 

25

7

28.00

79.40

2

19.00

183.80

1.44

3.10

 

26

8

28.00

79.40

2

19.00

184.80

1.70

3.79

 

27

9

28.00

79.40

2

19.00

185.80

2.21

3.70

 

28

10

28.00

79.40

2

19.00

186.80

2.88

2.09

 

29

11

28.00

79.40

2

19.00

187.80

5.19

1.41

Shima [63]

30

Series I-1

27.20

40.00

2

22.30

500.00

0.00

6.96

 

31

Series I-2

28.40

40.00

2

22.30

500.00

2.50

2.89

 

32

Series I-3

24.40

40.00

2

22.30

500.00

11.90

2.27

 

33

Series I-4

27.70

40.00

2

22.30

500.00

28.90

2.38

Zhao and Jin [82]

34

P1

22.13

44.00

1

12.00

80.00

0.27

2.65

 

35

P2

22.13

44.00

1

12.00

80.00

0.29

3.23

 

36

P3

22.13

44.00

1

12.00

80.00

0.92

5.79

 

37

P4

22.13

44.00

1

12.00

80.00

1.13

5.84

 

38

P5

22.13

44.00

1

12.00

80.00

0.78

7.41

 

39

P6

22.13

44.00

1

12.00

80.00

1.47

8.63

 

40

P7

22.13

44.00

1

12.00

80.00

1.85

7.30

 

41

P8

22.13

44.00

1

12.00

80.00

1.50

7.96

 

42

P9

22.13

44.00

1

12.00

80.00

1.99

9.29

 

43

P10

22.13

44.00

1

12.00

80.00

1.04

10.26

 

44

P11

22.13

44.00

1

12.00

80.00

2.75

5.97

 

45

P12

22.13

44.00

1

12.00

80.00

2.43

4.84

 

46

P13

22.13

44.00

1

12.00

80.00

4.77

3.75

 

47

P14

22.13

44.00

1

12.00

80.00

5.01

1.63

 

48

D1

22.13

44.00

2

12.00

80.00

0.12

8.92

 

49

D2

22.13

44.00

2

12.00

80.00

0.16

9.49

 

50

D3

22.13

44.00

2

12.00

80.00

0.24

7.37

 

51

D4

22.13

44.00

2

12.00

80.00

0.32

8.50

 

52

D5

22.13

44.00

2

12.00

80.00

0.43

8.39

 

53

D6

22.13

44.00

2

12.00

80.00

0.62

10.62

 

54

D7

22.13

44.00

2

12.00

80.00

0.81

11.35

 

55

D8

22.13

44.00

2

12.00

80.00

1.40

9.99

 

56

D9

22.13

44.00

2

12.00

80.00

2.54

9.95

 

57

D10

22.13

44.00

2

12.00

80.00

3.75

8.59

 

58

D11

22.13

44.00

2

12.00

80.00

4.45

8.70

 

59

D12

22.13

44.00

2

12.00

80.00

5.68

5.97

 

60

D13

22.13

44.00

2

12.00

80.00

7.50

4.64

 

61

D14

22.13

44.00

2

12.00

80.00

9.72

1.66

Fang et al. [18]

62

D1

52.10

60.00

2

20.00

80.00

0.00

15.40

 

63

D1

52.10

60.00

2

20.00

80.00

0.00

21.20

 

64

D1

52.10

60.00

2

20.00

80.00

0.00

21.40

 

65

D1

52.10

60.00

2

20.00

80.00

0.10

15.80

 

66

D1

52.10

60.00

2

20.00

80.00

2.00

12.00

 

67

D1

52.10

60.00

2

20.00

80.00

2.20

13.00

 

68

D1

52.10

60.00

2

20.00

80.00

3.50

11.40

 

69

D1

52.10

60.00

2

20.00

80.00

4.40

12.00

 

70

D1

52.10

60.00

2

20.00

80.00

5.80

6.20

 

71

D1

52.10

60.00

2

20.00

80.00

6.80

8.50

 

72

D1

52.10

60.00

2

20.00

80.00

9.00

7.00

 

73

D1

52.10

60.00

2

20.00

80.00

9.00

7.50

 

74

S1

52.10

60.00

1

20.00

80.00

0.00

4.00

 

75

S1

52.10

60.00

1

20.00

80.00

0.00

6.20

 

76

S1

52.10

60.00

1

20.00

80.00

0.70

10.70

 

77

S1

52.10

60.00

1

20.00

80.00

1.20

14.20

 

78

S1

52.10

60.00

1

20.00

80.00

3.25

7.60

 

79

S1

52.10

60.00

1

20.00

80.00

3.50

10.70

 

80

S1

52.10

60.00

1

20.00

80.00

4.10

7.30

 

81

S1

52.10

60.00

1

20.00

80.00

6.80

8.00

Horrigmoe et al. [34]

82

ref1

30.00

147.50

2

25.00

160.00

0.00

9.84

 

83

ref2

30.00

147.50

2

25.00

160.00

0.00

10.48

 

84

ref3

30.00

147.50

2

25.00

160.00

0.00

11.91

 

85

1

30.00

147.50

2

25.00

160.00

5.62

7.68

 

86

2

30.00

147.50

2

25.00

160.00

5.84

8.09

 

87

3

30.00

147.50

2

25.00

160.00

3.40

9.68

 

88

4

30.00

147.50

2

25.00

160.00

3.05

7.67

 

89

5

30.00

147.50

2

25.00

160.00

5.58

5.17

 

90

6

30.00

147.50

2

25.00

160.00

5.19

7.17

 

91

7

30.00

147.50

2

25.00

160.00

4.15

6.10

 

92

8

30.00

147.50

2

25.00

160.00

5.19

9.03

 

93

9

30.00

147.50

2

25.00

160.00

6.82

6.48

 

94

ref1

30.00

147.50

2

25.00

160.00

0.00

9.13

 

95

ref2

30.00

147.50

2

25.00

160.00

0.00

10.00

 

96

U23

30.00

147.50

2

25.00

160.00

3.20

11.20

 

97

U26

30.00

147.50

2

25.00

160.00

4.69

7.89

 

98

U27

30.00

147.50

2

25.00

160.00

4.35

8.08

 

99

U28

30.00

147.50

2

25.00

160.00

3.88

11.32

 

100

U29

30.00

147.50

2

25.00

160.00

4.45

9.04

 

101

U30

30.00

147.50

2

25.00

160.00

4.39

7.64

 

102

U31

30.00

147.50

2

25.00

160.00

4.52

7.28

 

103

ref1

30.00

147.50

2

25.00

160.00

0.00

10.43

 

104

ref2

30.00

147.50

2

25.00

160.00

0.00

10.92

 

105

ref3

30.00

147.50

2

25.00

160.00

0.00

9.69

 

106

U3

30.00

147.50

2

25.00

160.00

2.09

8.70

 

107

U4

30.00

147.50

2

25.00

160.00

1.78

13.63

 

108

U5

30.00

147.50

2

25.00

160.00

3.09

4.93

 

109

U6

30.00

147.50

2

25.00

160.00

1.31

10.89

 

110

U7

30.00

147.50

2

25.00

160.00

2.22

5.91

 

111

U9

30.00

147.50

2

25.00

160.00

3.16

13.02

 

112

U10

30.00

147.50

2

25.00

160.00

0.79

9.36

 

113

U12

30.00

147.50

2

25.00

160.00

4.10

7.93

 

114

U13

30.00

147.50

2

25.00

160.00

5.33

3.89

 

115

U20

30.00

147.50

2

25.00

160.00

4.13

8.70

Chung et al. [12]

116

S13-0-I

28.30

68.50

1

13.00

37.10

0.00

14.70

 

117

S13-0-II

28.30

68.50

1

13.00

36.60

0.00

17.00

 

118

S13-0-III

28.30

68.50

1

13.00

37.90

0.00

14.00

 

119

A13-2-0.1

28.30

68.50

1

13.00

37.20

0.10

20.10

 

120

A13-2-0.5

28.30

68.50

1

13.00

37.10

0.50

17.40

 

121

A13-2-1.0

28.30

68.50

1

13.00

37.40

1.00

20.00

 

122

A13-3-1.2

28.30

68.50

1

13.00

36.70

1.20

16.20

 

123

A13-3-1.4

28.30

68.50

1

13.00

37.10

1.40

17.90

 

124

A13-4-0.9

28.30

68.50

1

13.00

38.00

0.90

16.40

 

125

A13-5-0.8

28.30

68.50

1

13.00

36.70

0.80

18.50

 

126

A13-5-1.9

28.30

68.50

1

13.00

37.10

1.90

20.30

 

127

A13-7-2.2

28.30

68.50

1

13.00

37.80

2.20

14.40

 

128

A13-10-1.9

28.30

68.50

1

13.00

36.80

1.90

15.90

Yalciner et al. [76]

129

R1SP1

23.00

15.00

2

14.00

50.00

0.00

9.10

 

130

R1SP2

23.00

15.00

2

14.00

50.00

0.00

9.40

 

131

R1SP3

23.00

15.00

2

14.00

50.00

0.00

9.20

 

132

R2SP1

23.00

30.00

2

14.00

50.00

0.00

14.00

 

133

R2SP2

23.00

30.00

2

14.00

50.00

0.00

12.30

 

134

R2SP3

23.00

30.00

2

14.00

50.00

0.00

13.50

 

135

R3SP1

23.00

45.00

2

14.00

50.00

0.00

12.10

 

136

R3SP2

23.00

45.00

2

14.00

50.00

0.00

17.30

 

137

R3SP3

23.00

45.00

2

14.00

50.00

0.00

15.00

 

138

R4SP1

23.00

15.00

2

14.00

50.00

8.90

3.70

 

139

R4SP2

23.00

15.00

2

14.00

50.00

4.10

13.00

 

140

R4SP3

23.00

15.00

2

14.00

50.00

2.47

11.20

 

141

R4SP4

23.00

15.00

2

14.00

50.00

2.72

11.70

 

142

R4SP5

23.00

15.00

2

14.00

50.00

4.32

12.20

 

143

R4SP6

23.00

15.00

2

14.00

50.00

4.33

12.20

 

144

R4SP7

23.00

15.00

2

14.00

50.00

4.09

13.00

 

145

R4SP8

23.00

15.00

2

14.00

50.00

6.51

3.20

 

146

R4SP9

23.00

15.00

2

14.00

50.00

14.52

2.10

 

147

R5SP1

23.00

30.00

2

14.00

50.00

1.37

18.00

 

148

R5SP2

23.00

30.00

2

14.00

50.00

3.45

9.60

 

149

R5SP3

23.00

30.00

2

14.00

50.00

5.56

3.30

 

150

R5SP4

23.00

30.00

2

14.00

50.00

1.40

17.90

 

151

R5SP5

23.00

30.00

2

14.00

50.00

1.69

16.90

 

152

R5SP6

23.00

30.00

2

14.00

50.00

1.60

17.00

 

153

R5SP7

23.00

30.00

2

14.00

50.00

3.57

8.90

 

154

R5SP8

23.00

30.00

2

14.00

50.00

5.36

3.70

 

155

R5SP9

23.00

30.00

2

14.00

50.00

16.65

2.10

 

156

R6SP1

23.00

45.00

2

14.00

50.00

0.69

19.10

 

157

R6SP2

23.00

45.00

2

14.00

50.00

1.69

13.40

 

158

R6SP3

23.00

45.00

2

14.00

50.00

2.66

12.40

 

159

R6SP4

23.00

45.00

2

14.00

50.00

0.68

17.90

 

160

R6SP5

23.00

45.00

2

14.00

50.00

0.66

18.90

 

161

R6SP6

23.00

45.00

2

14.00

50.00

0.84

18.30

 

162

R6SP7

23.00

45.00

2

14.00

50.00

0.88

18.20

 

163

R6SP8

23.00

45.00

2

14.00

50.00

1.60

13.70

 

164

R6SP9

23.00

45.00

2

14.00

50.00

3.81

1.30

 

165

R7SP1

23.00

15.00

2

14.00

50.00

18.75

4.30

 

166

R7SP2

23.00

15.00

2

14.00

50.00

8.90

3.00

 

167

R7SP3

23.00

15.00

2

14.00

50.00

14.66

2.00

 

168

R8SP1

23.00

30.00

2

14.00

50.00

6.87

6.50

 

169

R8SP2

23.00

30.00

2

14.00

50.00

17.33

1.80

 

170

R8SP3

23.00

30.00

2

14.00

50.00

6.40

5.50

 

171

R9SP1

23.00

45.00

2

14.00

50.00

6.27

3.20

 

172

R9SP2

23.00

45.00

2

14.00

50.00

0.68

18.00

 

173

R9SP3

23.00

45.00

2

14.00

50.00

3.81

1.30

 

174

R10SP1

51.00

15.00

2

14.00

50.00

0.00

19.60

 

175

R10SP2

51.00

15.00

2

14.00

50.00

0.00

14.30

 

176

R10SP3

51.00

15.00

2

14.00

50.00

0.00

20.00

 

177

R11SP1

51.00

30.00

2

14.00

50.00

0.00

20.90

 

178

R11SP2

51.00

30.00

2

14.00

50.00

0.00

21.70

 

179

R11SP3

51.00

30.00

2

14.00

50.00

0.00

21.00

 

180

R12SP1

51.00

45.00

2

14.00

50.00

0.00

21.20

 

181

R12SP2

51.00

45.00

2

14.00

50.00

0.00

27.40

 

182

R12SP3

51.00

45.00

2

14.00

50.00

0.00

27.80

 

183

R13SP1

51.00

15.00

2

14.00

50.00

1.33

18.50

 

184

R13SP2

51.00

15.00

2

14.00

50.00

7.48

3.50

 

185

R13SP3

51.00

15.00

2

14.00

50.00

4.47

6.30

 

186

R13SP4

51.00

15.00

2

14.00

50.00

0.77

22.30

 

187

R13SP5

51.00

15.00

2

14.00

50.00

0.80

22.40

 

188

R13SP6

51.00

15.00

2

14.00

50.00

0.90

21.70

 

189

R13SP7

51.00

15.00

2

14.00

50.00

0.94

21.50

 

190

R13SP8

51.00

15.00

2

14.00

50.00

7.56

3.50

 

191

R13SP9

51.00

15.00

2

14.00

50.00

3.30

7.50

 

192

R14SP1

51.00

30.00

2

14.00

50.00

0.00

20.40

 

193

R14SP2

51.00

30.00

2

14.00

50.00

5.14

6.20

 

194

R14SP3

51.00

30.00

2

14.00

50.00

5.46

2.40

 

195

R14SP4

51.00

30.00

2

14.00

50.00

0.65

23.80

 

196

R14SP5

51.00

30.00

2

14.00

50.00

0.68

23.90

 

197

R14SP6

51.00

30.00

2

14.00

50.00

0.77

23.50

 

198

R14SP7

51.00

30.00

2

14.00

50.00

0.77

23.40

 

199

R14SP8

51.00

30.00

2

14.00

50.00

1.70

14.00

 

200

R14SP9

51.00

30.00

2

14.00

50.00

4.45

4.20

 

201

R15SP1

51.00

45.00

2

14.00

50.00

0.00

28.30

 

202

R15SP2

51.00

45.00

2

14.00

50.00

2.69

7.60

 

203

R15SP3

51.00

45.00

2

14.00

50.00

0.34

26.20

 

204

R15SP4

51.00

45.00

2

14.00

50.00

0.31

31.60

 

205

R15SP5

51.00

45.00

2

14.00

50.00

0.40

31.00

 

206

R15SP6

51.00

45.00

2

14.00

50.00

0.41

30.80

 

207

R15SP7

51.00

45.00

2

14.00

50.00

4.73

3.00

 

208

R15SP8

51.00

45.00

2

14.00

50.00

4.38

3.40

 

209

R15SP9

51.00

45.00

2

14.00

50.00

4.17

3.90

 

210

R16SP1

51.00

15.00

2

14.00

50.00

8.95

3.00

 

211

R16SP2

51.00

15.00

2

14.00

50.00

6.90

8.00

 

212

R16SP3

51.00

15.00

2

14.00

50.00

3.41

6.80

 

213

R17SP1

51.00

30.00

2

14.00

50.00

9.90

5.90

 

214

R17SP2

51.00

30.00

2

14.00

50.00

4.86

1.70

 

215

R17SP3

51.00

30.00

2

14.00

50.00

1.72

13.80

 

216

R18SP1

51.00

45.00

2

14.00

50.00

0.34

26.90

 

217

R18SP2

51.00

45.00

2

14.00

50.00

0.34

31.70

 

218

R18SP3

51.00

45.00

2

14.00

50.00

3.08

6.10

  1. X3 = 1 for plain steel and 2 for deformed steel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, ND., Tran, XL. & Nguyen, H. Predicting ultimate bond strength of corroded reinforcement and surrounding concrete using a metaheuristic optimized least squares support vector regression model. Neural Comput & Applic 32, 7289–7309 (2020). https://doi.org/10.1007/s00521-019-04258-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-019-04258-x

Keywords

Navigation