Skip to main content
Log in

Prediction of fresh and hardened properties of self-compacting concrete using support vector regression approach

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This article presents the feasibility of using support vector regression (SVR) technique to determine the fresh and hardened properties of self-compacting concrete. Two different kernel functions, namely exponential radial basis function (ERBF) and radial basis function (RBF), were used to develop the SVR model. An experimental database of 115 data samples was collected from different literatures to develop the SVR model. The data used in SVR model have been organized in the form of six input parameters that covers dosage of binder content, fly ash, water–powder ratio, fine aggregate, coarse aggregate and superplasticiser. The above-mentioned ingredients have been taken as input variables, whereas slump flow value, L-box ratio, V-funnel time and compressive strength have been considered as output variables. The obtained results indicate that the SVR–ERBF model outperforms SVR–RBF model for learning and predicting the experimental data with the highest value of the coefficient of correlation (R) equal to 0.965, 0.954, 0.979 and 0.9773 for slump flow, L-box ratio, V-funnel and compressive strength, respectively, with small values of statistical errors. Also, the efficiency of SVR model is compared to artificial neural network (ANN) and multivariable regression analysis (MVR). In addition, a sensitivity analysis was also carried out to determine the effects of various input parameters on output. This study indicates that SVR–ERBF model can be used as an alternative approach in predicting the properties of self-compacting concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sfikas IP, Badogiannis EG, Trezos KG (2014) Rheology and mechanical characteristics of self-compacting concrete mixtures containing metakaolin. Constr Build Mater 64:121–129. https://doi.org/10.1016/j.conbuildmat.2014.04.048

    Article  Google Scholar 

  2. Beycioglu A, Yilmaz Aruntas H (2014) Workability and mechanical properties of self-compacting concretes containing LLFA, GBFS and MC. Constr Build Mater 73:626–635. https://doi.org/10.1016/j.conbuildmat.2014.09.071

    Article  Google Scholar 

  3. Yoo S-W, Ryu G-S, Choo JF (2015) Evaluation of the effects of high-volume fly ash on the flexural behavior of reinforced concrete beams. Constr Build Mater 93:1132–1144. https://doi.org/10.1016/j.conbuildmat.2015.05.021

    Article  Google Scholar 

  4. Acharya PK, Patro SK (2015) Effect of lime and ferrochrome ash (FA) as partial replacement of cement on strength, ultrasonic pulse velocity and permeability of concrete. Constr Build Mater 94:448–457. https://doi.org/10.1016/j.conbuildmat.2015.07.081

    Article  Google Scholar 

  5. Jalal M, Pouladkhan A, Fasihi O, Jafari D (2015) Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self compacting concrete. Constr Build Mater 94:90–104

    Article  Google Scholar 

  6. Siddique R, Aggarwal P, Aggarwal Y (2012) Influence of water/powder ratio on strength properties of self-compacting concrete containing coal fly ash and bottom ash. Constr Build Mater 29:73–81. https://doi.org/10.1016/j.conbuildmat.2011.10.035

    Article  Google Scholar 

  7. Sukumar B, Nagamani K, Srinivasa Raghavan R (2008) Evaluation of strength at early ages of self-compacting concrete with high volume fly ash. Constr Build Mater 22:1394–1401. https://doi.org/10.1016/j.conbuildmat.2007.04.005

    Article  Google Scholar 

  8. Saridemir M (2009) Prediction of compressive strength of concretes containing metakaolin and silica fume by artificial neural networks. Adv Eng Softw 40:350–355. https://doi.org/10.1016/j.advengsoft.2008.05.002

    Article  MATH  Google Scholar 

  9. Bilim C, Atiş CD, Tanyildizi H, Karahan O (2009) Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network. Adv Eng Softw 40:334–340. https://doi.org/10.1016/j.advengsoft.2008.05.005

    Article  MATH  Google Scholar 

  10. Özcan F, Atiş CD, Karahan O et al (2009) Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete. Adv Eng Softw 40:856–863. https://doi.org/10.1016/j.advengsoft.2009.01.005

    Article  MATH  Google Scholar 

  11. Yaprak H, Karaci A, Demir I (2013) Prediction of the effect of varying cure conditions and w/c ratio on the compressive strength of concrete using artificial neural networks. Neural Comput Appl 22:133–141. https://doi.org/10.1007/s00521-011-0671-x

    Article  Google Scholar 

  12. Nazari A, Hajiallahyari H, Rahimi A et al (2012) Prediction compressive strength of Portland cement-based geopolymers by artificial neural networks. Neural Comput Appl. https://doi.org/10.1007/s00521-012-1082-3

    Article  Google Scholar 

  13. Riahi S, Nazari A (2012) Predicting the effects of nanoparticles on early age compressive strength of ash-based geopolymers by artificial neural networks. Neural Comput Appl. https://doi.org/10.1007/s00521-012-1085-0

    Article  Google Scholar 

  14. Subaşi S, Beycioǧlu A, Sancak E, Şahin I (2013) Rule-based Mamdani type fuzzy logic model for the prediction of compressive strength of silica fume included concrete using non-destructive test results. Neural Comput Appl 22:1133–1139. https://doi.org/10.1007/s00521-012-0879-4

    Article  Google Scholar 

  15. Kostić S, Vasović D (2015) Prediction model for compressive strength of basic concrete mixture using artificial neural networks. Neural Comput Appl 26:1005–1024. https://doi.org/10.1007/s00521-014-1763-1

    Article  Google Scholar 

  16. Belalia Douma O, Boukhatem B, Ghrici M, Tagnit-Hamou A (2016) Prediction of properties of self-compacting concrete containing fly ash using artificial neural network. Neural Comput Appl 28:707–718. https://doi.org/10.1007/s00521-016-2368-7

    Article  Google Scholar 

  17. Sonebi M, Cevik A, Grünewald S, Walraven J (2016) Modelling the fresh properties of self-compacting concrete using support vector machine approach. Constr Build Mater 106:55–64. https://doi.org/10.1016/j.conbuildmat.2015.12.035

    Article  Google Scholar 

  18. Lee JJ, Kim DK, Chang SK, Lee J-H (2007) Application of support vector regression for the prediction of concrete strength. Comput Concr 4:299–316

    Article  Google Scholar 

  19. Yang HY, Dong YF (2013) Modelling concrete strength using support vector machines. Appl Mech Mater 438–439:170–173. https://doi.org/10.4028/www.scientific.net/AMM.438-439.170

    Article  Google Scholar 

  20. Yazdi JS, Kalantary F, Yazdi HS (2013) Prediction of elastic modulus of concrete using support vector committee method. J Mater Civ Eng 25:9–20. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000507

    Article  Google Scholar 

  21. Yan K, Shi C (2010) Prediction of elastic modulus of normal and high strength concrete by support vector machine. Constr Build Mater 24:1479–1485. https://doi.org/10.1016/j.conbuildmat.2010.01.006

    Article  Google Scholar 

  22. Naseri F, Jafari F, Mohseni E et al (2017) Experimental observations and SVM-based prediction of properties of polypropylene fibres reinforced self-compacting composites incorporating nano-CuO. Constr Build Mater 143:589–598. https://doi.org/10.1016/j.conbuildmat.2017.03.124

    Article  Google Scholar 

  23. Liu J, Yan KZ, Zhao X, Hu Y (2016) Prediction of autogenous shrinkage of concretes by support vector machine. Int J Pavement Res Technol 9:169–177. https://doi.org/10.1016/j.ijprt.2016.06.003

    Article  Google Scholar 

  24. Sobhani J, Khanzadi M, Movahedian AH (2013) Support vector machine for prediction of the compressive strength of no-slump concrete. Comput Concr 11:337–350. https://doi.org/10.12989/cac.2013.11.4.337

    Article  Google Scholar 

  25. Yinfeng D, Yingmin L, Ming L, Mingkui X (2008) Nonlinear structural response prediction based on support vector machines. J Sound Vib 311:886–897. https://doi.org/10.1016/j.jsv.2007.09.054

    Article  Google Scholar 

  26. Saber Mahani A, Shojaee S, Salajegheh E, Khatibinia M (2015) Hybridizing two-stage meta-heuristic optimization model with weighted least squares support vector machine for optimal shape of double-arch dams. Appl Soft Comput J 27:205–218. https://doi.org/10.1016/j.asoc.2014.11.014

    Article  Google Scholar 

  27. Yang S, Fang CQ, Yuan ZJ (2014) Study on mechanical properties of corroded reinforced concrete using support vector machines. Appl Mech Mater 578–579:1556–1561. https://doi.org/10.4028/www.scientific.net/AMM.578-579.1556

    Article  Google Scholar 

  28. Yu PS, Chen ST, Chang IF (2006) Support vector regression for real-time flood stage forecasting. J Hydrol 328:704–716. https://doi.org/10.1016/j.jhydrol.2006.01.021

    Article  Google Scholar 

  29. Yuvaraj P, Ramachandra Murthy A, Iyer NR et al (2013) Support vector regression based models to predict fracture characteristics of high strength and ultra high strength concrete beams. Eng Fract Mech 98:29–43. https://doi.org/10.1016/j.engfracmech.2012.11.014

    Article  Google Scholar 

  30. Tripathi S, Srinivas VV, Nanjundiah RS (2006) Downscaling of precipitation for climate change scenarios: a support vector machine approach. J Hydrol 330:621–640. https://doi.org/10.1016/j.jhydrol.2006.04.030

    Article  Google Scholar 

  31. Lin J-Y, Cheng C-T, Chau K-W (2006) Using support vector machines for long-term discharge prediction. Hydrol Sci J 51:599–612. https://doi.org/10.1623/hysj.51.4.599

    Article  Google Scholar 

  32. Yoon H, Jun SC, Hyun Y et al (2011) A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. J Hydrol 396:128–138. https://doi.org/10.1016/j.jhydrol.2010.11.002

    Article  Google Scholar 

  33. Debnath P, Dey AK (2017) Prediction of bearing capacity of geogrid-reinforced stone columns using support vector regression. Int J Geomech 18:1–15. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001067

    Article  Google Scholar 

  34. Vapnik VN, Golowich SE, Smola A (1996) Support vector method for function approximation, regression estimation, and signal processing. Advances in neural information processing systems, Morgan Kaufmann, San Mateo

    Google Scholar 

  35. Vapnik V, Golowich S, Smola A (1997) Support vector method for function approximation, regression estimation, and signalprocessing. In: Advances in neural information processing systems. MIT Press, Cambridge, pp 281–287

    Google Scholar 

  36. Gunn SR (2001) Support vector machines for classification and regression. In: Technical report. University of Southampton, Southampton. http://www.isis.ecs.soton.ac.uk/isystems/kernel/svm.zip. Accessed 16 May 2018

  37. Hillier FS, Editor S, Quantitative C, et al (2008) Linear and Nonlinear Programming. https://doi.org/10.1007/978-0-387-74503-9

  38. Vapnik VN, Jordan M, F- J (2000)The nature of statistical learning theory. Springer, New York. ISBN 0-387-98780-0, SPIN 10713304

  39. Smola AJJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14:199–222. https://doi.org/10.1023/B:Stco.0000035301.49549.88

    Article  MathSciNet  Google Scholar 

  40. Ma CK, Lee YH, Awang AZ et al (2017) Artificial neural network models for FRP-repaired concrete subjected to pre-damaged effects. Neural Comput Appl. https://doi.org/10.1007/s00521-017-3104-7

    Article  Google Scholar 

  41. Sahmaran M, Yaman I, Tokyay M (2009) Transport and mechanical properties of self consolidating concrete with high volume fly ash. Cem Concr Compos 31:99–106. https://doi.org/10.1016/j.cemconcomp.2008.12.003

    Article  Google Scholar 

  42. Siddique R, Aggarwal P, Aggarwal Y (2011) Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks. Adv Eng Softw 42:780–786. https://doi.org/10.1016/j.advengsoft.2011.05.016

    Article  Google Scholar 

  43. Uysal M, Yilmaz K (2011) Effect of mineral admixtures on properties of self-compacting concrete. Cem Concr Compos 33:771–776. https://doi.org/10.1016/j.cemconcomp.2011.04.005

    Article  Google Scholar 

  44. Patel R (2003) Development of statistical models to simulate and optimize self-consolidating concrete mixes incorporating high volume of fly ash. Dissertation, University of Ryerson, Toronto

  45. Gettu R, Izquierdo J, Gomes PCC, Josa A (2002) Development of high-strength self-compacting concrete with fly ash: a four-step experimental methodology. In: Proceedings of the 27th conference on our world in concrete and structures, Paramasivam y TH Tan, Singapore, pp 217–224

  46. Güneyisi E, Gesolu M, Özbay E (2010) Strength and drying shrinkage properties of self-compacting concretes incorporating multi-system blended mineral admixtures. Constr Build Mater 24:1878–1887. https://doi.org/10.1016/j.conbuildmat.2010.04.015

    Article  Google Scholar 

  47. Nepomuceno MCS, Pereira-De-Oliveira LA, Lopes SMR (2014) Methodology for the mix design of self-compacting concrete using different mineral additions in binary blends of powders. Constr Build Mater 64:82–94. https://doi.org/10.1016/j.conbuildmat.2014.04.021

    Article  Google Scholar 

  48. Bingol AF, Tohumcu I (2013) Effects of different curing regimes on the compressive strength properties of self compacting concrete incorporating fly ash and silica fume. Mater Des 51:12–18. https://doi.org/10.1016/j.matdes.2013.03.106

    Article  Google Scholar 

  49. Krishnapal P, Yadav RK, Rajeev C (2013) Strength characteristics of self compacting concrete containing flyash. Res J Eng Sci. ISSN 2278:9472

  50. Dhiyaneshwaran S, Ramanathan P, Baskar I, Venkatasubramani R (2013) Study on durability characteristics of self-compacting concrete with fly ash. Jordan J Civ Eng 7:342–353

    Google Scholar 

  51. Mahalingam B, Nagamani K (2011) Effect of processed fly ash on fresh and hardened properties of self compacting concrete. Int J Earth Sci Eng 4(5):930–940. ISSN 0974-5904

  52. Muthupriya P, Sri PN, Ramanathan MP, Venkatasubramani R (2012) Strength and workability character of self compacting concrete with GGBFS, FA and SF. Int J Emerg Trends Eng Dev 2(2):424–434. ISSN 2249-6149

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasenjit Saha.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Details of experimental variables and test results

Appendix: Details of experimental variables and test results

Author

Year

B

P

W/B

F

C

SP

D (mm)

L-box

V-funnel

Fc28

Sahmaran et al. [41]

2009

500

0

0.35

1038

639

6.75

665

0.87

12.7

62.2

  

500

30

0.34

1006

620

6.75

765

0.95

10.2

52.4

  

500

30

0.35

1008

621

6.75

715

0.95

15.8

57.3

  

500

40

0.35

995

613

6.75

730

0.85

10.7

59.1

  

500

40

0.32

1004

618

6.75

745

0.95

11.7

52.3

  

500

50

0.35

988

608

6.75

710

0.9

19.2

40.8

  

500

50

0.3

1010

628

6.75

738

0.88

15.1

47.5

  

500

60

0.35

979

603

6.75

740

0.85

12.8

38.1

  

500

60

0.3

997

614

6.75

770

0.95

9.4

39.9

Siddique [42]

2012

550

15

0.41

910

590

10.45

590

0.95

6.5

29

  

550

15

0.41

910

590

10.72

675

0.9

7.5

35.5

  

550

20

0.41

910

590

6.6

600

0.7

4.8

24

  

550

20

0.41

910

590

7.15

645

0.95

4.5

27

  

550

20

0.41

910

590

9.9

605

0.82

7.5

32

  

550

20

0.41

910

590

11

690

0.9

4.5

33.5

  

550

25

0.42

910

590

7.7

600

0.6

7

26

  

550

25

0.42

910

590

8.25

625

0.8

5.2

28

  

550

25

0.42

910

590

9.9

605

0.6

7

32

  

550

25

0.42

910

590

11

590

0.6

4.2

21.7

  

550

30

0.43

910

590

7.15

610

0.87

5.4

21

  

550

30

0.43

910

590

7.7

600

0.9

6.5

25.5

  

550

30

0.43

910

590

8.8

605

0.7

8.9

27.5

  

550

30

0.43

910

590

9.9

675

0.95

5

31

  

550

35

0.44

910

590

7.15

590

0.86

6.1

17

  

550

35

0.44

910

590

8.8

590

0.8

8

23

  

550

35

0.44

910

590

9.35

645

0.9

9

25

  

550

35

0.44

910

590

9.9

635

0.92

10

29.5

  

500

30

0.35

900

600

11

660

0.9

9

29.2

  

500

40

0.35

900

600

10.75

675

0.93

7

28.6

Uysal and Yilmaz [43]

2011

550

25

0.33

887

752

8.8

740

0.93

11.7

73.4

  

550

35

0.33

878

742

8.8

750

0.91

17

67.5

  

550

15

0.41

910

590

9.9

625

0.82

4

26.5

  

550

15

0.41

910

590

10.17

675

0.8

6.6

36

Patel [44]

2003

400

30

0.39

946

900

1.4

510

0.96

4.5

45

  

370

36

0.43

960

900

1.85

650

0.94

3

46

  

430

36

0.43

830

900

0.86

480

0.6

2.5

36

  

430

36

0.43

827

900

2.15

810

0.95

2

48

  

400

45

0.45

850

900

1.4

760

1

2.5

38

  

400

45

0.39

916

900

1.4

580

1

3

45

  

400

45

0.39

916

900

1.4

600

1

3

47

  

400

45

0.39

916

900

1.4

570

1

3

49

  

400

45

0.39

916

900

1.4

590

1

3.3

49

  

400

45

0.39

916

900

1.4

590

1

3.5

49

  

400

45

0.39

916

900

2.4

770

1

3.5

43

  

450

45

0.39

808

900

1.58

680

1

2.3

50

  

370

54

0.43

930

900

0.74

600

1

2.8

31

  

370

54

0.43

928

900

1.85

760

1

2.5

33

  

430

54

0.34

874

900

0.86

540

0.87

3.3

46

  

430

54

0.36

872

900

2.15

710

1

4

52

  

400

60

0.39

886

900

1.4

630

0.91

3.5

44

Gettu et al. [45]

2002

701

37

0.27

774

723

8.1

580

0.8

10

69.5

  

733

37

0.26

748

698

8.4

660

0.9

12

68.2

  

550

20

0.41

910

590

11.01

690

0.95

4.5

33.2

Siddique et al. [6]

2011

550

25

0.42

910

590

9.91

603

0.85

5.2

31.5

  

550

30

0.43

910

590

9.91

673

0.95

6.1

30.7

  

550

35

0.44

910

590

9.91

633

0.92

10

29.6

  

550

0

0.33

869

778

8.8

690

0.82

14.5

75.9

  

550

15

0.33

865

762

8.8

710

0.91

9.4

74.2

Güneyisi et al. [46]

2010

550

0

0.44

826

868

3.5

670

0.71

3.2

61.5

  

550

0

0.32

728

935

8.43

670

0.79

17

80.9

  

550

20

0.44

813

855

3.2

675

0.71

10.4

52.1

  

550

20

0.32

714

917

7.43

730

0.93

7

69.8

  

550

40

0.44

801

842

2.96

730

0.8

6

44.7

  

550

40

0.32

700

899

7.43

730

0.96

6

60.9

  

550

60

0.44

788

829

3

720

0.95

4

30.3

  

550

60

0.32

686

881

6.67

730

0.9

7

47.5

  

633

0

0.27

656

875

20.58

635

0.79

13.2

86.8

Nepomuceno et al. [47]

2014

643

0

0.29

761

729

19.95

630

0.86

9.9

81.9

  

670

0

0.27

695

772

21.84

620

0.81

10.4

85

  

551

16

0.31

822

772

11.34

625

0.7

11.6

59.6

  

564

16

0.31

841

729

11.55

630

0.77

10.3

56.8

  

588

16

0.28

752

820

12.39

635

0.77

11

64.8

  

604

16

0.28

772

772

12.71

625

0.8

9.7

63.1

  

613

16

0.26

686

875

12.92

615

0.77

12.7

67.5

  

618

16

0.28

790

729

13.02

640

0.83

11.6

63.6

  

649

16

0.26

726

772

13.65

650

0.84

10

69.1

  

613

24

0.26

685

875

15.33

645

0.8

13.3

78.2

  

633

24

0.26

706

820

15.86

630

0.79

12.4

79.2

  

649

24

0.26

726

772

16.28

655

0.84

10.5

80.3

  

567

25

0.3

846

729

13.86

655

0.82

11.3

69.9

  

607

25

0.27

774

772

15.12

640

0.83

10.8

74.5

  

620

25

0.27

792

729

15.54

635

0.83

10.1

75.7

Bingol and Tohumcu [48]

2013

500

40

0.35

923

663

7.5

680

0.88

6.2

55

  

500

55

0.35

908

652

7.5

700

0.91

7

42.7

  

450

0

0.45

890

810

9.25

687

0.8

9

50

  

480

0

0.4

890

810

13.3

650

0.88

12

52

Krishnapal et al. [49]

2013

450

10

0.45

890

810

8.2

689

0.79

8.6

45

  

480

10

0.4

890

810

9.9

665

0.85

9

46

  

450

20

0.45

890

810

6.4

690

0.78

8

41

  

480

20

0.4

890

810

9.68

685

0.82

8.4

42

  

450

30

0.45

890

810

4.8

695

0.78

8

39

  

480

30

0.4

890

810

9.4

680

0.8

8.1

40

  

575

0

0.31

794

772

17.22

645

0.75

13.3

77.8

  

589

0

0.31

813

729

17.64

640

0.75

10.6

76.8

  

628

0

0.29

744

772

19.53

615

0.77

11.6

82.9

Dhiyaneshwaran et al. [50]

2013

530

20

0.45

768

668

4.55

680

0.95

9.8

37.9

  

530

30

0.45

768

668

4.55

690

0.95

8.5

41.4

  

530

40

0.45

768

668

4.55

685

0.95

7.9

37.2

  

530

50

0.45

768

668

4.55

678

0.95

7.6

35.9

  

500

0

0.35

967

694

8

630

0.84

6.1

78.6

  

500

25

0.35

938

673

7.5

660

0.85

7

62

Mahalingam and Nagamani [51]

2011

450

30

0.43

789

926

2.77

660

0.88

3.5

44.8

  

500

30

0.39

731

862

6.15

640

0.75

2.5

53.6

  

550

30

0.35

711

835

4.74

610

0.86

3.2

57.3

  

450

40

0.43

780

917

2.77

650

0.88

3.7

41.3

  

500

40

0.39

724

850

6.15

680

0.88

2.3

46.7

  

550

40

0.35

701

823

6.77

730

0.9

3.4

54.9

  

450

50

0.43

770

907

2.5

675

0.72

2.7

37.1

  

500

50

0.39

714

836

4.92

730

0.88

2.9

41.8

  

550

50

0.35

703

824

5.41

725

0.88

2.4

44.4

  

550

15

0.41

910

590

10.73

673

0.89

7.5

35.2

Muthupriya et al. [52]

2012

500

50

0.35

900

600

10.5

680

0.95

7.2

28.7

  

530

0

0.45

768

668

4.55

660

0.92

12

30

  

530

10

0.45

768

668

4.55

675

0.93

10.6

32.2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, P., Debnath, P. & Thomas, P. Prediction of fresh and hardened properties of self-compacting concrete using support vector regression approach. Neural Comput & Applic 32, 7995–8010 (2020). https://doi.org/10.1007/s00521-019-04267-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-019-04267-w

Keywords

Navigation