Skip to main content
Log in

Inverse partitioned matrix-based semi-random incremental ELM for regression

  • Extreme Learning Machine and Deep Learning Networks
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Incremental extreme learning machine has been verified that it has the universal approximation capability. However, there are two major issues lowering its efficiency: one is that some “random” hidden nodes are inefficient which decrease the convergence rate and increase the structural complexity, the other is that the final output weight vector is not the minimum norm least-squares solution which decreases the generalization capability. To settle these issues, this paper proposes a simple and efficient algorithm in which the parameters of even hidden nodes are calculated by fitting the residual error vector in the previous phase, and then, all existing output weights are recursively updated based on inverse partitioned matrix. The algorithm can reduce the inefficient hidden nodes and obtain a preferable output weight vector which is always the minimum norm least-squares solution. Theoretical analyses and experimental results show that the proposed algorithm has better performance on convergence rate, generalization capability and structural complexity than other incremental extreme learning machine algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hornik K (1991) Approximation capabilities of multilayer feedforward. Neural Netw 4:251–257. https://doi.org/10.1016/0893-6080(91)90009-T

    Article  Google Scholar 

  2. Leshno M, Lin V-Y, Pinkus A, Schocken S (1993) Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw 6:861–867. https://doi.org/10.1016/S0893-6080(05)80131-5

    Article  Google Scholar 

  3. Ito Y (1992) Approximation of continuous functions on rd by linear combinations of shifted rotations of a sigmoid function with and without scaling. Neural Netw 5:105–115. https://doi.org/10.1016/S0893-6080(05)80009-7

    Article  Google Scholar 

  4. Huang G-B, Babri H (1998) Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Trans Neural Netw 9:224–229. https://doi.org/10.1109/72.655045

    Article  Google Scholar 

  5. Teoh E-J, Xiang C, Tan K-C (2006) Estimating the number of hidden neurons in a feedforward network using the singular value decomposition. IEEE Trans Neural Netw 17:1623–1629. https://doi.org/10.1109/TNN.2006.880582

    Article  Google Scholar 

  6. Kwok T, Yeung D (1997) Objective functions for training new hidden units in constructive neural networks. IEEE Trans Neural Netw 8:1131–1148. https://doi.org/10.1109/72.623214

    Article  Google Scholar 

  7. Huang G-B, Babri H (1997) General approximation theorem on feedforward networks. In: International conference on information, vol 2, pp 698–702

  8. Huang G-B, Zhu Q-Y, Siew C-K (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: IEEE international joint conference, vol 2. IEEE, pp 985–990. https://doi.org/10.1109/IJCNN.2004.1380068

  9. Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: Theory and applications. In: Brazilian symposium on neural networks, vol 70, pp 489–501. https://doi.org/10.1016/j.neucom.2005.12.126

  10. Huang G-B, Zhu Q-Y, Siew C-K (2006) Real-time learning capability of neural networks. IEEE Trans Neural Netw 17:863–878. https://doi.org/10.1109/TNN.2006.875974

    Article  Google Scholar 

  11. Gao J-F, Wang Z, Yang Y, Zhang W-J, Tao C-Y, Guan J-N, Rao N-N (2013) A novel approach for lie detection based on f-score and extreme learning machine. PLoS One 8(6):e64704. https://doi.org/10.1371/journal.pone.0064704

    Article  Google Scholar 

  12. Karpagachelvi S, Arthanari M, Sivakumar M (2012) Classification of electrocardiogram signals with support vector machines and extreme learning machine. Neural Comput Appl 21(6):1331–1339. https://doi.org/10.1007/s00521-011-0572-z

    Article  Google Scholar 

  13. An L, Bhanu B (2012) Image super-resolution by extreme learning machine. In: 2012 19th IEEE international conference on image processing, IEEE Signal Process. IEEE, pp 2209–2212. https://doi.org/10.1109/ICIP.2012.6467333

  14. Bazi Y, Alajlan N, Melgani F, Hichri H, Malek S, Yager R-R (2014) Differential evolution extreme learning machine for the classification of hyperspectral images. IEEE Geosci Remote Sens Lett 11(6):1066–1070. https://doi.org/10.1109/LGRS.2013.2286078

    Article  Google Scholar 

  15. Cambria E, Gastaldo P, Bisio F, Zunino R (2015) An ELM-based model for affective analogical reasoning. Neurocomputing 149:443–455. https://doi.org/10.1016/j.neucom.2014.01.064

    Article  Google Scholar 

  16. Rong H-J, Jia Y-X, Zhao G-S (2014) Aircraft recognition using modular extreme learning machine. Neurocomputing 128:166–174. https://doi.org/10.1016/j.neucom.2012.12.064

    Article  Google Scholar 

  17. Rong H-J, Huang G-B, Ong Y-S (2008) Extreme learning machine for multi-categories classification applications. In: IJCNN. https://doi.org/10.1109/IJCNN.2008.4634028

  18. Huang G-B, Zhou H-M, Ding X-J, Zhang R (2011) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern 42(2):513–529

    Article  Google Scholar 

  19. Huang G-B, Chen L, Siew C-K (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17:879–892. https://doi.org/10.1109/TNN.2006.875977

    Article  Google Scholar 

  20. Huang G-B, Chen L (2008) Enhanced random search based incremental extreme learning machine. Neurocomputing 71:3460–3468. https://doi.org/10.1016/j.neucom.2007.10.008

    Article  Google Scholar 

  21. Rong H-J, Ong Y-S, Tan A-H, Zhu Z-X (2008) A fast pruned-extreme learning machine for classification problem. Neurocomputing 72:359–366. https://doi.org/10.1016/j.neucom.2008.01.005

    Article  Google Scholar 

  22. Miche Y, Sorjamaa A, Lendasse A (2008) OP-ELM: theory, experiments and a toolbox. In: ICANN 2008. Springer, pp 145–154

  23. Miche Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse A (2010) OP-ELM: optimally pruned extreme learning machine. IEEE Trans Neural Netw 21(1):158–162

    Article  Google Scholar 

  24. Yang Y-M, Wang Y-N, Yuan X-F (2012) Bidirectional extreme learning machine for regression problem and its learning effectiveness. IEEE Trans Neural Netw Learn Syst 23:1498–1505. https://doi.org/10.1109/TNNLS.2012.2202289

    Article  Google Scholar 

  25. Huang G-B, Chen L (2007) Convex incremental extreme learning machine. Neurocomputing 70:3056–3062. https://doi.org/10.1016/j.neucom.2007.02.009

    Article  Google Scholar 

  26. Barron A (1993) Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans Inf Theory 39(3):930–945. https://doi.org/10.1109/18.256500

    Article  MathSciNet  MATH  Google Scholar 

  27. Feng G-R, Huang G-B, Lin Q-P, Gay R (2009) Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans Neural Netw 20:1352–1357. https://doi.org/10.1109/TNN.2009.2024147

    Article  Google Scholar 

  28. Ye Y-B, Qin Y (2015) Qr factorization based incremental extreme learning machine with growth of hidden nodes. Pattern Recognit Lett 65:177–183. https://doi.org/10.1016/j.patrec.2015.07.031

    Article  Google Scholar 

  29. Li P (2016) Orthogonal incremental extreme learning machine for regression and multiclass classification. Neural Comput Appl 27:111–120. https://doi.org/10.1007/s00521-014-1567-3

    Article  Google Scholar 

  30. Serre D (2002) Matrices: theory and applications. Springer, New York. https://doi.org/10.1007/978-1-4419-7683-3

    Book  MATH  Google Scholar 

  31. Meyer C-D (2001) Matrix analysis and applied linear algebra. SIAM, Philadelphia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, G., Yao, F. & Zhang, B. Inverse partitioned matrix-based semi-random incremental ELM for regression. Neural Comput & Applic 32, 14263–14274 (2020). https://doi.org/10.1007/s00521-019-04289-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-019-04289-4

Keywords

Navigation