Abstract
The aim of this paper is to give a multi-attribute decision-making (MADM) method for the interval-valued intuitionistic fuzzy (IVIF) set using the set pair analysis (SPA) theory. IVIF set can express the uncertain information in a more valuable manner, while the connection number (CN) based on the “identity,” “discrepancy” and “contrary” degrees of the SPA theory handles the uncertainties and certainties systems. Based on these features, in this paper, we develop a new possibility degree measure based on the CNs to rank the different IVIF numbers. The properties and advantages of the measure are described in details. Later on, we present a novel MADM method and illustrate with several examples to validate it. A comparative as well as superiority analysis is performed to show the feasibility and validity of the approach.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353
Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:87–96
Atanassov K, Gargov G (1989) Interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst 31:343–349
Garg H, Kumar K (2019) Linguistic interval-valued Atanassov intuitionistic fuzzy sets and their applications to group decision-making problems. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2019.2897961
Xu ZS (2007) Intuitionistic fuzzy aggregation operators. IEEE Trans Fuzzy Syst 15:1179–1187
Xu ZS, Yager RR (2006) Some geometric aggregation operators based on intuitionistic fuzzy sets. Int J Gen Syst 35:417–433
Garg H (2016) Generalized intuitionistic fuzzy interactive geometric interaction operators using Einstein t-norm and t-conorm and their application to decision making. Comput Ind Eng 101:53–69
Garg H (2017) Novel intuitionistic fuzzy decision making method based on an improved operation laws and its application. Eng Appl Arti Intel 60:164–174
Xu Z, Chen J (2007) On geometric aggregation over interval-valued intuitionistic fuzzy information. In: Fourth international conference on fuzzy systems and knowledge discovery, FSKD 2007, vol 2, pp 466–471
Garg H (2018) Some robust improved geometric aggregation operators under interval-valued intuitionistic fuzzy environment for multi-criteria decision -making process. J Ind Manag Optim 14(1):283–308
Arora R, Garg H (2018) Prioritized averaging/geometric aggregation operators under the intuitionistic fuzzy soft set environment. Sci Iran 25(1):466–482
Chen TY (2014) Interval-valued intuitionistic fuzzy QUALIFLEX method with a likelihood-based comparison approach for multiple criteria decision analysis. Inf Sci 261:149–169
Garg H, Kumar K (2018) An advanced study on the similarity measures of intuitionistic fuzzy sets based on the set pair analysis theory and their application in decision making. Soft Comput 22(15):4959–4970
Kaur G, Garg H (2018) Multi-attribute decision-making based on Bonferroni mean operators under cubic intuitionistic fuzzy set environment. Entropy 20(1):65. https://doi.org/10.3390/e20010065
Kumar K, Garg H (2018) Connection number of set pair analysis based TOPSIS method on intuitionistic fuzzy sets and their application to decision making. Appl Intel 48(8):2112–2119
Park JH, Park IY, Kwun YC, Tan X (2011) Extension of the TOPSIS method for decision making problems under interval-valued intuitionistic fuzzy sets. Appl Math Model 35(5):2544–2556
Bai ZY (2013) An interval-valued intuitionistic fuzzy TOPSIS method based on an improved score function. Sci World J 2013: 879089 (6 pages)
Garg H (2016) A new generalized improved score function of interval-valued intuitionistic fuzzy sets and applications in expert systems. Appl Soft Comput 38:988–999
Sahin R (2016) Fuzzy multicriteria decision making method based on the improved accuracy function for interval-valued intuitionistic fuzzy sets. Soft Comput 20(7):2557–2563
Xu ZS, Da QL (2003) Possibility degree method for ranking interval numbers and its application. J Syst Eng 18:67–70
Wei CP, Tang X (2010) Possibility degree method for ranking intuitionistic fuzzy numbers. In: 3rd IEEE/WIC/ACM international conference on web intelligence and intelligent agent technology (WI-IAT ’10), pp 142–145
Zhang X, Yue G, Teng Z (2009) Possibility degree of interval-valued intuitionistic fuzzy numbers and its application. In: Proceedings of the international symposium on information processing, pp 33 –36
Wan SP, Dong J (2014) A possibility degree method for interval-valued intuitionistic fuzzy multi-attribute group decision making. J Comput Syst Sci 80(1):237–256
Garg H, Kumar K (2019) Improved possibility degree method for ranking intuitionistic fuzzy numbers and their application in multiattribute decision-making. Granul Comput 4(2):237–247
Dammak F, Baccour L, Alimi AM (2016) An exhaustive study of possibility measures of interval-valued intuitionistic fuzzy sets and application to multicriteria decision making. Adv Fuzzy Syst 2016, 9185706 (10 pages)
Gao F (2013) Possibility degree and comprehensive priority of interval numbers. Syst Eng Theory Pract 33(8):2033–2040
Garg H, Kumar K (2018) Group decision making approach based on possibility degree measures and the linguistic intuitionistic fuzzy aggregation operators using Einstein norm operations. J Mult Valued Log Soft Comput 31(1/2):175–209
Shui XZ, Li DQ (2003) A possibility based method for priorities of interval judgment matrix. Chin J Manag Sci 11(1):63–65
Chen SM, Cheng SH, Lan TC (2016) Multicriteria decision making based on the TOPSIS method and similarity measures between intuitionistic fuzzy values. Inf Sci 367–368:279–295
Sivaraman G, Nayagam VLG, Ponalagusamy R (2013) Multi-criteria interval valued intuitionistic fuzzy decision making using a new score function. In: KIM 2013 knowledge and information management conference, pp 122–131
Zhao K (1989) Set pair and set pair analysis-a new concept and systematic analysis method. In: Proceedings of the national conference on system theory and regional planning, pp 87–91
Jiang YL, Xu CF, Yao Y, Zhao KQ (2004) Systems information in set pair analysis and its applications. In: Proceedings of 2004 international conference on machine learning and cybernetics, vol 3, pp 1717–1722
ChangJian W (2007) Application of the set pair analysis theory in multiple attribute decision-making. J Mech Strength 6(029):1009–1012
Garg H, Kumar K (2019) An advanced study on operations of connection number based on set pair analysis. Nat Acad Sci Lett. https://doi.org/10.1007/s40009-018-0748-5
Lü WS, Zhang B (2012) Set pair analysis method of containing target constraint mixed interval multi-attribute decision-making. Appl Mech Mater 226:2222–2226
Xie Z, Zhang F, Cheng J, Li L (2013) Fuzzy multi-attribute decision making methods based on improved set pair analysis. Sixth Int Symp Comput Intel Des 2:386–389
Cao YX, Zhou H, Wang JQ (2018) An approach to interval-valued intuitionistic stochastic multi-criteria decision-making using set pair analysis. Int J Mach Learn Cybern 9(4):629–640
Kumar K, Garg H (2018) TOPSIS method based on the connection number of set pair analysis under interval-valued intuitionistic fuzzy set environment. Comput Appl Math 37(2):1319–1329
Fu S, Zhou H (2016) Triangular fuzzy number multi-attribute decision-making method based on set-pair analysis. J Softw Eng 6(4):52–58
Wang JQ, Gong L (2009) Interval probability stochastic multi-criteria decision-making approach based on set pair analysis. Control Decis 24:1877–1880
Garg H, Kumar K (2018) Distance measures for connection number sets based on set pair analysis and its applications to decision making process. Appl Intel 48(10):3346–3359
Garg H, Kumar K (2018) A novel exponential distance and its based TOPSIS method for interval-valued intuitionistic fuzzy sets using connection number of SPA theory. Artif Intel Rev. https://doi.org/10.1007/s10462-018-9668-5
Hu J, Yang L (2011) Dynamic stochastic multi-criteria decision making method based on cumulative prospect theory and set pair analysis. Syst Eng Proc 1:432–439
Garg H, Kumar K (2018) A novel correlation coefficient of intuitionistic fuzzy sets based on the connection number of set pair analysis and its application. Sci Iran E 25(4):2373–2388
Garg H, Kumar K (2018) Some aggregation operators for linguistic intuitionistic fuzzy set and its application to group decision-making process using the set pair analysis. Arab J Sci Eng 43(6):3213–3227
Chaokai H, Meng W (2015) A new reputation model for p2p network based on set pair analysis. Open Cybern Syst J 9:1393–1398
Garg H (2016) Some series of intuitionistic fuzzy interactive averaging aggregation operators. Springer Plus 5(1):999. https://doi.org/10.1186/s40064-016-2591-9
Shen F, Ma X, Li Z, Xu ZS, Cai D (2018) An extended intuitionistic fuzzy TOPSIS method based on a new distance measure with an application to credit risk evaluation. Inf Sci 428:105–119
Wang CY, Chen SM (2017) Multiple attribute decision making based on interval-valued intuitionistic fuzzy sets, linear programming methodology, and the extended TOPSIS method. Inf Sci 397:155–167
Arora R, Garg H (2019) Group decision-making method based on prioritized linguistic intuitionistic fuzzy aggregation operators and its fundamental properties. Comput Appl Math 38(2):1–36. https://doi.org/10.1007/s40314-019-0764-1
Nancy, Garg H (2019) A novel divergence measure and its based TOPSIS method for multi criteria decision-making under single-valued neutrosophic environment. J Intel Fuzzy Syst 36(1):101–115
Rani D, Garg H (2019) Some modified results of the subtraction and division operations on interval neutrosophic sets. J Exp Theor Artif Intel. https://doi.org/10.1080/0952813X.2019.1592236
Singh S, Garg H (2018) Symmetric triangular interval type-2 intuitionistic fuzzy sets with their applications in multi criteria decision making. Symmetry 10(9):401. https://doi.org/10.3390/sym10090401
Garg H, Rani D (2019) Some results on information measures for complex intuitionistic fuzzy sets. Int J Intel Syst. https://doi.org/10.1002/int.22127
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Garg, H., Kumar, K. A novel possibility measure to interval-valued intuitionistic fuzzy set using connection number of set pair analysis and its applications. Neural Comput & Applic 32, 3337–3348 (2020). https://doi.org/10.1007/s00521-019-04291-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-019-04291-w