Skip to main content

Advertisement

Log in

NSNAD: negative selection-based network anomaly detection approach with relevant feature subset

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Intrusion detection systems are one of the security tools widely deployed in network architectures in order to monitor, detect and eventually respond to any suspicious activity in the network. However, the constantly growing complexity of networks and the virulence of new attacks require more adaptive approaches for optimal responses. In this work, we propose a semi-supervised approach for network anomaly detection inspired from the biological negative selection process. Based on a reduced dataset with a filter/ranking feature selection technique, our algorithm, namely negative selection for network anomaly detection (NSNAD), generates a set of detectors and uses them to classify events as anomaly. Otherwise, they are matched against an Artificial Human Leukocyte Antigen in order to be classified as normal. The accuracy and the computational time of NSNAD are tested under three intrusion detection datasets: NSL-KDD, Kyoto2006+ and UNSW-NB15. We compare the performance of NSNAD against a fully supervised algorithm (Naïve Bayes), an unsupervised clustering algorithm (K-means) and a semi-supervised algorithm (One-class SVM) with respect to multiple accuracy metrics. We also compare the time incurred by each algorithm in training and classification stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Any disease-producing agent, especially a virus, bacterium, or other microorganism.

  2. In k-fold cross-validation, the original sample is randomly partitioned into k equal-sized subsamples. Of the k subsamples, a single one is retained as test data, and the remaining \(k - 1\) subsamples are used as training data. The cross-validation process is then repeated k times, with each of the k subsamples used exactly once as test data. The k results from the folds are then averaged to produce a single estimation.

References

  1. Abas EAER, Abdelkader H, Keshk A (2015) Artificial immune system based intrusion detection. In: 2015 IEEE seventh international conference on intelligent computing and information systems (ICICIS), pp 542–546. Institute of Electrical & Electronics Engineers (IEEE). https://doi.org/10.1109/intelcis.2015.7397274

  2. Agrawal A, Mohammed S, Fiaidhi J (2016) Developing data mining techniques for intruder detection in network traffic. Int J Secur Appl 10(8):335–342. https://doi.org/10.14257/ijsia.2016.10.8.29

    Google Scholar 

  3. Al-Enezi J, Abbod M, Alsharhan S (2010) Artificial immune systems-models, algorithms and applications. http://www.arpapress.com/Volumes/Vol3Issue2/IJRRAS_3_2_01.pdf

  4. Ambusaidi MA, He X, Nanda P, Tan Z (2016) Building an intrusion detection system using a filter-based feature selection algorithm. IEEE Trans Comput 65(10):2986–2998. https://doi.org/10.1109/TC.2016.2519914

    MathSciNet  MATH  Google Scholar 

  5. Amer SH, Hamilton J (2010) Intrusion detection systems (ids) taxonomy-a short review. Def Cyber Secur 13(2):23–30

    Google Scholar 

  6. Ammar A (2015) Comparison of feature reduction techniques for the binominal classification of network traffic. J Data Anal Inf Process 3(02):11. https://doi.org/10.4236/jdaip.2015.32002

    Google Scholar 

  7. Anusha K, Sathiyamoorthy E (2016) Omamids: ontology based multi-agent model intrusion detection system for detecting web service attacks. J Appl Secur Res 11(4):489–508. https://doi.org/10.1080/19361610.2016.1211847

    Google Scholar 

  8. Axelsson S (2000) Intrusion detection systems: a survey and taxonomy. Report, Technical report

  9. Bahl S, Sharma SK (2016) A minimal subset of features using correlation feature selection model for intrusion detection system. In: Proceedings of the second international conference on computer and communication technologies, pp 337–346. Springer. https://doi.org/10.1007/978-81-322-2523-2_32

  10. Bethi SK, Phoha VV, Reddy YM (2004) Clique clustering approach to detect denial-of-service attacks. In: Proceedings from the fifth annual IEEE SMC information assurance workshop 2004, pp 447–448. https://doi.org/10.1109/iaw.2004.1437856

  11. Bhuyan M, Bhattacharyya D, Kalita J (2014) Network anomaly detection: methods, systems and tools. Commun Surv Tutor IEEE 16(1):1–34

    Google Scholar 

  12. Brownlee J (2011) Clever algorithms: nature-inspired programming recipes. Jason Brownlee

  13. Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, Niculae V, Prettenhofer P, Gramfort A, Grobler J, Layton R, VanderPlas J, Joly A, Holt B, Varoquaux G (2013) API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD workshop: languages for data mining and machine learning, pp 108–122

  14. Burges CJ (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2(2):121–167. https://doi.org/10.1023/a:1009715923555

    Google Scholar 

  15. de Castro L, Zuben FV (2002) Learning and optimization using the clonal selection principle. IEEE Trans Evol Comput 6(3):239–251. https://doi.org/10.1109/tevc.2002.1011539

    Google Scholar 

  16. de Castro LN, Timmis JI (2003) Artificial immune systems as a novel soft computing paradigm. Soft Comput 7(8):526–544

    Google Scholar 

  17. Cemerlic A, Yang L, Kizza JM (2008) Network intrusion detection based on bayesian networks. In: SEKE, pp 791–794

  18. Chan FT, Prakash A, Tibrewal R, Tiwari M (2013) Clonal selection approach for network intrusion detection. In: Proceedings of the 3rd international conference on intelligent computational systems (ICICS’2013), Singapore, pp 1–5

  19. Chen MH, Chang PC, Wu JL (2016) A population-based incremental learning approach with artificial immune system for network intrusion detection. Eng Appl Artif Intell 51:171–181. https://doi.org/10.1016/j.engappai.2016.01.020

    Google Scholar 

  20. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297. https://doi.org/10.1007/bf00994018

    MATH  Google Scholar 

  21. Crosbie M, Spafford G (1995) Applying genetic programming to intrusion detection. In: Working notes for the AAAI symposium on genetic programming, pp 1–8. MIT Press, Cambridge

  22. DasGupta D (1993) An overview of artificial immune systems and their applications. In: Artificial immune systems and their applications, pp 3–21. Springer

  23. Dasgupta D, Nino F (2008) Immunological computation: theory and applications. CRC Press, Boca Raton

    Google Scholar 

  24. Dasgupta D, Yu S, Nino F (2011) Recent advances in artificial immune systems: models and applications. Appl Soft Comput 11(2):1574–1587. https://doi.org/10.1016/j.asoc.2010.08.024

    Google Scholar 

  25. Dhanabal L, Shantharajah S (2015) A study on NSL-KDD dataset for intrusion detection system based on classification algorithms. Int J Adv Res Comput Commun Eng 4(6):446–452

    Google Scholar 

  26. Ding K, Li J, Liu H (2019) Interactive anomaly detection on attributed networks. In: In the twelfth ACM international conference on web search and data mining (WSDM ’19). https://doi.org/10.1145/3289600.3290964

  27. Empirical rule: What is it? (2017). http://www.statisticshowto.com/empirical-rule-2/

  28. Forrest S, Perelson A, Allen L, Cherukuri R (1994) Self-nonself discrimination in a computer. In: Proceedings of 1994 IEEE computer society symposium on research in security and privacy, p 202. Institute of Electrical & Electronics Engineers (IEEE). https://doi.org/10.1109/risp.1994.296580

  29. Gentile C, Li S, Kar P, Karatzoglou A, Zappella G, Etrue E (2017) On context-dependent clustering of bandits. In: Precup D, Teh YW (eds) Proceedings of the 34th international conference on machine learning, proceedings of machine learning research, vol 70, pp 1253–1262. PMLR, International Convention Centre, Sydney, Australia. http://proceedings.mlr.press/v70/gentile17a.html

  30. Ghanem TF, Elkilani WS, Abdul-kader HM (2015) A hybrid approach for efficient anomaly detection using metaheuristic methods. J Adv Res 6(4):609–619. https://doi.org/10.1016/j.jare.2014.02.009

    Google Scholar 

  31. González-Pino J, Edmonds J, Papa M (2006) Attribute selection using information gain for a fuzzy logic intrusion detection system. In: Defense and security symposium, pp 62410D–62410D. International society for optics and photonics

  32. González FA, Dasgupta D (2003) Anomaly detection using real-valued negative selection. Genet Program Evolvable Mach 4(4):383–403

    Google Scholar 

  33. Guha S, Yau SS, Buduru AB (2016) Attack detection in cloud infrastructures using artificial neural network with genetic feature selection. In: Dependable, autonomic and secure computing, 14th International conference on pervasive intelligence and computing, 2nd International conf on big data intelligence and computing and cyber science and technology congress (DASC/PiCom/DataCom/CyberSciTech), 2016 IEEE 14th Intl C, pp 414–419. IEEE

  34. Guo H, Feng Y, Hao F, Zhong S, Li S (2014) Dynamic fuzzy logic control of genetic algorithm probabilities. J Comput 9(1):22–27. https://doi.org/10.4304/jcp.9.1.22-27

    Google Scholar 

  35. Gutierrez MP, Kiekintveld C (2016) Bandits for cybersecurity: adaptive intrusion detection using honeypots. In: AAAI Workshop: Artificial Intelligence for Cyber Security

  36. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software. SIGKDD Explor Newsl 11(1):10. https://doi.org/10.1145/1656274.1656278

    Google Scholar 

  37. Hao F, Li S, Min G, Kim HC, Yau SS, Yang LT (2015) An efficient approach to generating location-sensitive recommendations in ad-hoc social network environments. IEEE Trans Serv Comput 8(3):520–533. https://doi.org/10.1109/tsc.2015.2401833

    Google Scholar 

  38. Hao F, Park DS, Li S, Lee HM (2016) Mining \(\lambda\)-maximal cliques from a fuzzy graph. Sustainability 8(6):553

    Google Scholar 

  39. Hofmann A, Horeis T, Sick B (2004) Feature selection for intrusion detection: an evolutionary wrapper approach. In: 2004 IEEE international joint conference on neural networks (IEEE Cat. No. 04CH37541), vol 2, pp 1563–1568. Institute of Electrical & Electronics Engineers (IEEE). https://doi.org/10.1109/ijcnn.2004.1380189

  40. Hofmeyr SA, Forrest S (2000) Architecture for an artificial immune system. Evol Comput 8(4):443–473. https://doi.org/10.1162/106365600568257

    Google Scholar 

  41. Hong L (2008) Artificial immune system for anomaly detection. In: 2008 IEEE international symposium on knowledge acquisition and modeling workshop, pp 340–343. Institute of Electrical & Electronics Engineers (IEEE). https://doi.org/10.1109/kamw.2008.4810493

  42. Hoque MS, Mukit M, Bikas M, Naser A, et al. (2012) An implementation of intrusion detection system using genetic algorithm. arXiv preprint arXiv:1204.1336

  43. Igbe O, Darwish I, Saadawi T (2016) Distributed network intrusion detection systems: an artificial immune system approach. In: Connected health: applications, systems and engineering technologies (CHASE), 2016 IEEE First International Conference on, pp 101–106. IEEE

  44. Janarthanan T, Zargari S (2017) Feature selection in unsw-nb15 and kddcup’99 datasets. In: 2017 IEEE 26th international symposium on industrial electronics (ISIE), pp 1881–1886. IEEE

  45. Kar P, Li S, Narasimhan H, Chawla S, Sebastiani F (2016) Online optimization methods for the quantification problem. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 1625–1634. ACM

  46. Karegowda AG, Manjunath A, Jayaram M (2010) Comparative study of attribute selection using gain ratio and correlation based feature selection. Int J Inf Technol Knowl Manag 2(2):271–277

    Google Scholar 

  47. Kayacik HG, Zincir-Heywood AN, Heywood MI (2005) Selecting features for intrusion detection: A feature relevance analysis on kdd 99 intrusion detection datasets. In: Proceedings of the third annual conference on privacy, security and trust

  48. Khammassi C, Krichen S (2017) A GA-LR wrapper approach for feature selection in network intrusion detection. Comput Secur 70:255–277

    Google Scholar 

  49. Kim J, Bentley PJ (2001) Towards an artificial immune system for network intrusion detection: An investigation of clonal selection with a negative selection operator. In: Proceedings of the 2001 congress on evolutionary computation, 2001. vol 2, pp 1244–1252. IEEE

  50. Kim J, Bentley PJ (2002) Towards an artificial immune system for network intrusion detection: an investigation of dynamic clonal selection. In: Proceedings of the 2002 congress on evolutionary computation, 2002. CEC’02., vol 2, pp 1015–1020. IEEE

  51. Kira K, Rendell LA (1992) A practical approach to feature selection. In: Proceedings of the ninth international workshop on Machine learning, pp 249–256

  52. Korda N, Szörényi B, Shuai L (2016) Distributed clustering of linear bandits in peer to peer networks. In: Journal of machine learning research workshop and conference proceedings, vol 48, pp 1301–1309. International Machine Learning Society

  53. Kumar V, Chauhan H, Panwar D (2013) K-means clustering approach to analyze NSL-KDD intrusion detection dataset. International Journal of Soft Computing and Engineering (IJSCE) ISSN, pp 2231–2307

  54. Li S, Hao F, Li M, Kim HC (2013) Medicine rating prediction and recommendation in mobile social networks. In: International conference on grid and pervasive computing, pp 216–223. Springer

  55. Li S, Karatzoglou A, Gentile C: Collaborative filtering bandits. In: Proceedings of the 39th international ACM SIGIR conference on research and development in information retrieval

  56. Li X, Ye N (2001) Decision tree classifiers for computer intrusion detection. J Parallel Distrib Comput Pract 4(2):179–190

    MathSciNet  Google Scholar 

  57. Lu C, Feng J, Lin Z, Mei T, Yan S (2018) Subspace clustering by block diagonal representation. IEEE Transactions on Pattern Analysis and Machine Intelligence pp 1–1. https://doi.org/10.1109/tpami.2018.2794348

  58. Lu W, Traore I (2004) Detecting new forms of network intrusion using genetic programming. Comput Intell 20(3):475–494

    MathSciNet  Google Scholar 

  59. Matthews BW (1975) Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure 405(2):442–451

    Google Scholar 

  60. Mohammadi M, Akbari A, Raahemi B, Nassersharif B, Asgharian H (2014) A fast anomaly detection system using probabilistic artificial immune algorithm capable of learning new attacks. Evol Intel 6(3):135–156. https://doi.org/10.1007/s12065-013-0101-3

    Google Scholar 

  61. Moustafa JSN (2016) The unsw-nb15 data set description. https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersecurity/ADFA-NB15-Datasets/

  62. Moustafa N, Slay J (2015) The significant features of the unsw-nb15 and the kdd99 data sets for network intrusion detection systems. Unpublished. https://doi.org/10.13140/RG.2.1.2264.4883

  63. Moustafa N, Slay J (2015) UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In: 2015 Military communications and information systems conference (MilCIS), pp 1–6. IEEE. https://doi.org/10.1109/milcis.2015.7348942

  64. Moustafa N, Slay J (2016) The evaluation of network anomaly detection systems: statistical analysis of the unsw-nb15 data set and the comparison with the kdd99 data set. Inf Secur J Global Perspect 25:1–3. https://doi.org/10.1080/19393555.2015.1125974

    Google Scholar 

  65. Mukkamala S, Janoski G, Sung A (2002) Intrusion detection using neural networks and support vector machines. In: Neural Networks, 2002. IJCNN’02. In: Proceedings of the 2002 international joint conference on, vol 2, pp 1702–1707. IEEE

  66. Najafabadi MM, Khoshgoftaar TM, Seliya N (2016) Evaluating feature selection methods for network intrusion detection with kyoto data. Int J Reliab Qual Saf Eng 23(01):1650001. https://doi.org/10.1142/s0218539316500017

    Google Scholar 

  67. Nastaiinullah, N., Adiwijaya, Kurniati, AP (2014) Anomaly detection on intrusion detection system using CLIQUE partitioning. In: 2014 2nd International conference on information and communication technology (ICoICT). IEEE. https://doi.org/10.1109/icoict.2014.6914031

  68. Nguyen HT, Petrović S, Franke K (2010) A comparison of feature-selection methods for intrusion detection, pp 242–255. Springer. https://doi.org/10.1007/978-3-642-14706-7_19

  69. Noble CC, Cook DJ (2003) Graph-based anomaly detection. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM Press. https://doi.org/10.1145/956750.956831

  70. Owen JA, Punt J, Stranford SA et al (2013) Kuby immunology. WH Freeman, New York

    Google Scholar 

  71. Panda M, Patra MR (2007) Network intrusion detection using naive bayes. Int J Comput Sci Netw Secur 7(12):258–263

    Google Scholar 

  72. Parham P (2015) The immune system, 4th edn. Garland Science, New York City

    MATH  Google Scholar 

  73. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2007–2017) Scikit-learn tool. http://scikit-learn.org

  74. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    MathSciNet  MATH  Google Scholar 

  75. Popoola E, Adewumi AO (2017) Efficient feature selection technique for network intrusion detection system using discrete differential evolution and decision. IJ Netw Secur 19(5):660–669

    Google Scholar 

  76. Portnoy L (2000) Intrusion detection with unlabeled data using clustering

  77. Rathore H (2016) Mapping biological systems to network systems

  78. Ryan J, Lin MJ, Miikkulainen R (1998) Intrusion detection with neural networks. In: Proceedings of the advances in neural information processing systems 10: annual conference on neural information processing systems 1997, NeurIPS 1977, Denver, Colorado, USA, 1997. The MIT Press 1998, ISBN 0-262-10076-2

  79. Salamatova T, Zhukov V (2017) Network intrusion detection by the coevolutionary immune algorithm of artificial immune systems with clonal selection. IOP Conf Ser Mater Sci Eng 173(1):012016

    Google Scholar 

  80. Saurabh P, Verma B (2016) An efficient proactive artificial immune system based anomaly detection and prevention system. Expert Syst Appl 60:311–320

    Google Scholar 

  81. Seresht NA, Azmi R (2014) MAIS-IDS: a distributed intrusion detection system using multi-agent ais approach. Eng Appl Artif Intell 35:286–298

    Google Scholar 

  82. Shanmugavadivu R, Nagarajan N (2011) Network intrusion detection system using fuzzy logic. Indian J Comput Sci Eng (IJCSE) 2(1):101–111

    Google Scholar 

  83. Shen J, Wang J, Ai H (2012) An improved artificial immune system-based network intrusion detection by using rough set. CN 04(01):41–47. https://doi.org/10.4236/cn.2012.41006

    Google Scholar 

  84. Shon T, Moon J (2007) A hybrid machine learning approach to network anomaly detection. Inf Sci 177(18):3799–3821

    Google Scholar 

  85. Sompayrac LM (2016) How the immune system works. The how it works series, 5ed edn. Wiley, Hoboken

    Google Scholar 

  86. Song J, Takakura H, Okabe Y, Eto M, Inoue D, Nakao K (2011) Statistical analysis of honeypot data and building of kyoto 2006+ dataset for NIDS evaluation. In: Proceedings of the first workshop on building analysis datasets and gathering experience returns for security, pp 29–36. ACM. https://doi.org/10.1145/1978672.1978676

  87. Souici-Meslati L, Zekri M (2016) Immunological approach for intrusion detection. REVUE AFRICAINE DE LA RECHERCHE EN INFORMATIQUE ET MATHÉMATIQUES APPLIQUÉES 17:

  88. Sridevi R, Chattemvelli R (2012) Genetic algorithm and artificial immune systems: a combinational approach for network intrusion detection. In: 2012 International Conference on Advances in Engineering, Science and Management (ICAESM), pp 494–498. IEEE

  89. Tabatabaefar M, Miriestahbanati M, Grégoire JC (2017) Network intrusion detection through artificial immune system. In: Systems Conference (SysCon), 2017 Annual IEEE International, pp 1–6. IEEE

  90. Tavallaee M, Bagheri E, Lu W, Ghorbani AA (2009) A detailed analysis of the KDD CUP 99 data set. In: 2009 IEEE symposium on computational intelligence for security and defense applications. Institute of Electrical & Electronics Engineers (IEEE). https://doi.org/10.1109/cisda.2009.5356528

  91. Traffic data from kyoto university’s honeypots. http://www.takakura.com/Kyoto_data/data/

  92. Vapnik VN (2000) The nature of statistical learning theory. Springer, New York. https://doi.org/10.1007/978-1-4757-3264-1

  93. Xian JQ, Lang FH, Tang XL (2005) A novel intrusion detection method based on clonal selection clustering algorithm. In: 2005 International conference on machine learning and cybernetics, vol 6, pp 3905–3910. IEEE. https://doi.org/10.1109/icmlc.2005.1527620

  94. Yan Q, Yu J (2006) Ainids: an immune-based network intrusion detection system. In: Defense and security symposium, pp 62410U–62410U. International Society for Optics and Photonics

  95. Yang H, Li T, Hu X, Wang F, Zou Y (2014) A survey of artificial immune system based intrusion detection. Sci World J 2014:1–11. https://doi.org/10.1155/2014/156790

    Google Scholar 

  96. Yasir H, Balasaraswathi VR, Journaux L, Sugumaran M (2018) Benchmark datasets for network intrusion detection: a review. Int J Netw Secur 20:645–654

    Google Scholar 

  97. Yin C, Ma L, Feng L (2015) Towards accurate intrusion detection based on improved clonal selection algorithm. Multimed Tools Appl 76:1–14. https://doi.org/10.1007/s11042-015-3117-0

    Google Scholar 

  98. Yin C, Ma L, Feng L (2016) A feature selection method for improved clonal algorithm towards intrusion detection. Int J Pattern Recognit Artif Intell 30(05):1659013

    Google Scholar 

  99. Zargari S, Voorhis D (2012) Feature selection in the corrected KDD-dataset. In: 2012 Third international conference on emerging intelligent data and web technologies. IEEE. https://doi.org/10.1109/eidwt.2012.10

  100. Zhang L, ying BAI Z, long LU Y, xing ZHA Y, wen LI Z (2014) Integrated intrusion detection model based on artificial immune. J China Univ Posts Telecommun 21(2):83–90

    Google Scholar 

  101. Zhao X, Wang G, Li Z (2016) Unsupervised network anomaly detection based on abnormality weights and subspace clustering. In: 2016 Sixth international conference on information science and technology (ICIST). IEEE. https://doi.org/10.1109/icist.2016.7483462

  102. Zhu X (2005) Semi-supervised learning literature survey. Technical Report 1530, Department of Computer Sciences, University of Wosconsin, Madison

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naila Belhadj aissa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Feature description

Appendix: Feature description

See Tables 1516 and 17.

Table 15 NSL-KDD attributes
Table 16 Kyoto2006+ attributes
Table 17 UNSW-NB15 attributes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belhadj aissa, N., Guerroumi, M. & Derhab, A. NSNAD: negative selection-based network anomaly detection approach with relevant feature subset. Neural Comput & Applic 32, 3475–3501 (2020). https://doi.org/10.1007/s00521-019-04396-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-019-04396-2

Keywords

Navigation